《河北省唐山市路北区2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《河北省唐山市路北区2022-2023学年中考押题数学预测卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A15cm2B24cm2C39cm2D48cm22点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1x20x3,则y1、y2、y3的大小关系是( )Ay3y1y2By1y2y3Cy3y2y1Dy2y1y33小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图根据图中信息,下列说法:这栋居民楼共有居民140人每周使用手机支付次数为2835次的人数最多有的人每周使用手机支付的次数在3542次每周使用手机支付不超过21次的有15
3、人其中正确的是( )ABCD4如图,已知直线l1:y=2x+4与直线l2:y=kx+b(k0)在第一象限交于点M若直线l2与x轴的交点为A(2,0),则k的取值范围是()A2k2B2k0C0k4D0k25|的倒数是( )A2BCD26如图,在ABC中,ACB=90, ABC=60, BD平分ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A3.5B3C4D4.57如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD8股市有风险,投资需谨慎截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A9.5106B9.5
4、107C9.5108D9.51099已知一次函数y(k2)x+k不经过第三象限,则k的取值范围是()Ak2Bk2C0k2D0k210如图,在半径为5的O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11方程的根是_12二次函数y(x2m)2+1,当mxm+1时,y随x的增大而减小,则m的取值范围是_13如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为_
5、.14圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_15 一般地,当、为任意角时,sin(+)与sin()的值可以用下面的公式求得:sin(+)=sincos+cossin;sin()=sincoscossin例如sin90=sin(60+30)=sin60cos30+cos60sin30=1类似地,可以求得sin15的值是_16若代数式x26x+b可化为(x+a)25,则a+b的值为_三、解答题(共8题,共72分)17(8分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股
6、票涨到每股多少元时才能卖出?(精确到0.01元)18(8分)如图,在平面直角坐标系中,抛物线y=x22ax与x轴相交于O、A两点,OA=4,点D为抛物线的顶点,并且直线y=kx+b与该抛物线相交于A、B两点,与y轴相交于点C,B点的横坐标是1(1)求k,a,b的值;(2)若P是直线AB上方抛物线上的一点,设P点的横坐标是t,PAB的面积是S,求S关于t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,当PBCD时,点Q是直线AB上一点,若BPQ+CBO=180,求Q点坐标19(8分)如图,ACBD,DE交AC于E,ABDE,AD求证:ACAE+BC20(8分)九年级学生到距离
7、学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.(1)求关于的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?21(8分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且ECF45,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH填空:AHC ACG;(填“”或“”或“”)线段AC,AG,AH什么关系?请说明理由;设AEm,AGH的面积S有变化吗?如果变
8、化请求出S与m的函数关系式;如果不变化,请求出定值请直接写出使CGH是等腰三角形的m值22(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_名学生,最喜欢用电话沟通的所对应扇形的圆心角是_;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请
9、用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率23(12分)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点
10、的个数分别是1个、2个?24如图,ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求ABC的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:底面积是:9cm1,底面周长是6cm,则侧面积是:65=15cm1则这个圆锥的全面积为:9+15=14cm1故选B考点:圆锥的计算2、A【解析】作出反比例函数的图象(如图),即可作出判断:31,反比例函数的图象在二、四象限,y随x的增大而增大,且当x1时,y1;当x1时,y1当x1x21x3时,y3y1y2故选A3、B【解析】根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读
11、频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:这栋居民楼共有居民3101522302520125人,此结论错误;每周使用手机支付次数为2835次的人数最多,此结论正确;每周使用手机支付的次数在3542次所占比例为,此结论正确;每周使用手机支付不超过21次的有3101528人,此结论错误;故选:B【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据4、D【解析】解:直线l1与x轴的交点为A(1,0),1k+b=0,解得:直线l1:y=1x+4与直线l1:y=kx+b(k0)的交点
12、在第一象限,解得0k1故选D【点睛】两条直线相交或平行问题;一次函数图象上点的坐标特征5、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键6、B【解析】解:ACB90,ABC60,A10,BD平分ABC,ABDABC10,AABD,BDAD6,在RtBCD中,P点是BD的中点,CPBD1故选B7、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B8、B【解析】试题分析: 15000000=152故选B考点:科学
13、记数法表示较大的数9、D【解析】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时, ,解得0k2,综上所述,0k1【解析】由条件可知二次函数对称轴为x=2m,且开口向上,由二次函数的性质可知在对称轴的左侧时y随x的增大而减小,可求得m+12m,即m1故答案为m1点睛:本题主要考查二次函数的性质,掌握当抛物线开口向下时,在对称轴右侧y随x的增大而减小是解题的关键13、.【解析】设正六边形ABCDEF的边长为4a,则AA1AF1FF12a求出正六边形的边长,根据S六边形GHIJKI:S六边形ABCDEF()2,计算即可
14、;【详解】设正六边形ABCDEF的边长为4a,则AA1AF1FF12a,作A1MFA交FA的延长线于M,在RtAMA1中,MAA160,MA1A30,AMAA1a,MA1AA1cos30=a,FM5a,在RtA1FM中,FA1,F1FLAFA1,F1LFA1AF120,F1FLA1FA,FLa,F1La,根据对称性可知:GA1F1La,GL2aaa,S六边形GHIJKI:S六边形ABCDEF()2,故答案为:【点睛】本题考查正六边形与圆,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题14、15p【解析】试题分析
15、:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解圆锥的侧面积=235=15故答案为15考点:圆锥的计算15、【解析】试题分析:sin15=sin(6045)=sin60cos45cos60sin45=故答案为考点:特殊角的三角函数值;新定义16、1【解析】根据题意找到等量关系x26x+b=(x+a)25,根据系数相等求出a,b,即可解题.【详解】解:由题可知x26x+b=(x+a)25,整理得:x26x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,a+b=1.【点睛】本题考查了配方法的实际应
16、用,属于简单题,找到等量关系求出a,b是解题关键.三、解答题(共8题,共72分)17、至少涨到每股6.1元时才能卖出.【解析】根据关系式:总售价-两次交易费总成本+1000列出不等式求解即可【详解】解:设涨到每股x元时卖出,根据题意得1000x-(5000+1000x)0.5%5000+1000, 解这个不等式得x,即x6.1 答:至少涨到每股6.1元时才能卖出【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费总成本+1000”列出不等关系式18、(1)k=1、a=2、b=4;(2)s=t2 t6,自变量t的取值范围是4t1;(3)Q(,)【
17、解析】(1)根据题意可得A(-4,0)代入抛物线解析式可得a,求出抛物线解析式,根据B的横坐标可求B点坐标,把A,B坐标代入直线解析式,可求k,b(2)过P点作PNOA于N,交AB于M,过B点作BHPN,设出P点坐标,可求出N点坐标,即可以用t表示S(3)由PBCD,可求P点坐标,连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作DTOA于T,根据P的坐标,可得POA=45,由OA=OC可得CAO=45则POAB,根据抛物线的对称性可知R在对称轴上设Q点坐标,根据BORPQS,可求Q点坐标【详解】(1)OA=4A(4,0)16+8a=0a=2,y=x24x,当x=1时,y=1+
18、4=3,B(1,3),将A(4,0)B(1,3)代入函数解析式,得,解得,直线AB的解析式为y=x+4,k=1、a=2、b=4;(2)过P点作PNOA于N,交AB于M,过B点作BHPN,如图1,由(1)知直线AB是y=x+4,抛物线是y=x24x,当x=t时,yP=t24t,yN=t+4PN=t24t(t+4)=t25t4,BH=1t,AM=t(4)=t+4,SPAB=PN(AM+BH)=(t25t4)(1t+t+4)=(t25t4)3,化简,得s=t2 t6,自变量t的取值范围是4t1;4t1(3)y=x24x,当x=2时,y=4即D(2,4),当x=0时,y=x+4=4,即C(0,4),C
19、DOAB(1,3)当y=3时,x=3,P(3,3),连接OP,交AC于点R,过P点作PNOA于M,交AB于N,过D点作DTOA于T,如图2,可证R在DT上PN=ON=3PON=OPN=45BPR=PON=45,OA=OC,AOC=90PBR=BAO=45,POACBPQ+CBO=180,BPQ=BCO+BOC过点Q作QSPN,垂足是S,SPQ=BORtanSPQ=tanBOR,可求BR=,OR=2,设Q点的横坐标是m,当x=m时y=m+4,SQ=m+3,PS=m1,解得m=当x=时,y=,Q(,)【点睛】本题考查二次函数综合题、一次函数的应用、相似三角形的判定和性质、全等三角形的判定和性质等知
20、识,解题的关键是灵活运用所学知识,学会添加常用辅助线,构造特殊四边形解决问题.19、见解析.【解析】由“SAS”可证ABCDEC,可得BCCE,即可得结论【详解】证明:ABDE,AD,ACBDCE90ABCDEC(SAS)BCCE,ACAE+CEACAE+BC【点睛】本题考查了全等三角形的判定和性质,熟练运用全等三角形的性质是本题的关键20、;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】(1)根据函数图象中的数据可以求得关于的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设关于的函数解析式是
21、,得,即关于的函数解析式是;(2)由图象可知,步行的学生的速度为:千米/分钟,步行同学到达百花公园的时间为:(分钟),当时, ,得,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、(1)=;(2)结论:AC2AGAH理由见解析;(3)AGH的面积不变m的值为或2或84.【解析】(1)证明DAC=AHC+ACH=43,ACH+ACG=43,即可推出AHC=ACG;(2)结论:AC2=AGAH只要证明AHCACG即可解决问题;(3)AGH的面积不变理由三角形的面积公式计算即可;分三种情形分别求解即可解决问题.
22、【详解】(1)四边形ABCD是正方形,ABCBCDDA4,DDAB90DACBAC43,AC,DACAHC+ACH43,ACH+ACG43,AHCACG故答案为(2)结论:AC2AGAH理由:AHCACG,CAHCAG133,AHCACG,AC2AGAH(3)AGH的面积不变理由:SAGHAHAGAC2(4)21AGH的面积为1如图1中,当GCGH时,易证AHGBGC,可得AGBC4,AHBG8,BCAH,,AEAB如图2中,当CHHG时,易证AHBC4,BCAH,1,AEBE2如图3中,当CGCH时,易证ECBDCF22.3在BC上取一点M,使得BMBE,BMEBEM43,BMEMCE+ME
23、C,MCEMEC22.3,CMEM,设BMBEm,则CMEMm,m+m4,m4(1),AE44(1)84,综上所述,满足条件的m的值为或2或84【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题22、 (1)120,54;(2)补图见解析;(3)660名;(4).【解析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即
24、可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解【详解】解:(1)这次统计共抽查学生2420%120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是36054,故答案为120、54;(2)喜欢使用短信的人数为120182466210(人),条形统计图为:(3)1200660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展
25、示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和用样本估计总体23、(1)y=2x,OA=,(2)是一个定值,(3)当时,E点只有1个,当时,E点有2个。【解析】(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2xOA=(2)是一个定值,理由如下:如答图1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理
26、可得如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点RAOD=BAE,AF=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK=63=3,AK=62=4,AB=5 (求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABE
27、OED.设OE=x,则AE=x (),由ABEOED得,()顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个当时,E点有2个24、3【解析】试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案试题解析:BD3+AD3=63+83=303=AB3,ABD是直角三角形,ADBC,在RtACD中,CD=,SABC=BCAD=(BD+CD)AD=338=3,因此ABC的面积为3答:ABC的面积是3考点:3勾股定理的逆定理;3勾股定理