《江苏省无锡市两区联考2022-2023学年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市两区联考2022-2023学年中考数学模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( ) ABCD22022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( )A1210B1.210C1.210D0.12103下列实数中,有理数是()ABCD4如图,以两条直线l1,l2的交点坐标为解的方程组是( )ABCD5如图是一个由5个相同的正方体组成的立体图形,它的
3、三视图是( )ABCD6一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD7某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在( )A50.560.5 分B60.570.5 分C70.580.5 分D80.590.5 分8下列计算正确的是()A2m+3n=5mn Bm2m3=m6 Cm8m6=m2 D(m)3=m39如图是某个几何体的展开图,该几何体是( )A三棱柱B圆锥C四棱柱D圆柱10的绝对值是()A4BC4D0.411如图所示的几何体的俯视图是( )ABCD
4、12如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_14分式与的最简公分母是_15如图,RtABC中,ACB=90,A=15,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD若AD=14,则BC的长为_16如图,在矩形ABCD中,E、F分别是AD、CD的中点,沿着BE将ABE折叠,点A刚好落在BF上,若AB=2,则AD=_17某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能
5、力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用_;依据是_(答案不唯一,理由支撑选项即可)18如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,按此规律继续下去,则矩形ABnCnCn-1的面积为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知函数(x0)的图象经过点A、B,
6、点B的坐标为(2,2)过点A作ACx轴,垂足为C,过点B作BDy轴,垂足为D,AC与BD交于点F一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E若AC=OD,求a、b的值;若BCAE,求BC的长20(6分)如图1,在RtABC中,ABC=90,BA=BC,直线MN是过点A的直线CDMN于点D,连接BD(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系经过观察思考,小明出一种思路:如图1,过点B作BEBD,交MN于点E,进而得出:DC+AD=BD(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展
7、延伸在直线MN绕点A旋转的过程中,当ABD面积取得最大值时,若CD长为1,请直接写BD的长21(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率22(8分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的
8、取值范围23(8分)如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(4,1),B(3,3),C(1,2)画出ABC关于x轴对称的A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出CC1C2的面积是 24(10分)矩形AOBC中,OB=4,OA=1分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k0)的图象与边AC交于点E。当点
9、F运动到边BC的中点时,求点E的坐标;连接EF,求EFC的正切值;如图2,将CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式25(10分)观察下列各个等式的规律:第一个等式:=1,第二个等式: =2,第三个等式:=3请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的26(12分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一018(含18)1.901.00阶梯二
10、1825(含25)2.85阶梯三25以上5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18(1.90+1.00)+2(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议27(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图
11、:(1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据二次函数图象开口向上得到a0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b
12、+c0,对称轴为直线 b0,当x=1时y=a+b+c0,的图象经过第二四象限,且与y轴的正半轴相交,反比例函数图象在第二、四象限,只有D选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.2、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】数据12000用科学记数法表示为1.2104,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的
13、表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值.3、B【解析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,等,很容易选择【详解】A、二次根2不能正好开方,即为无理数,故本选项错误,B、无限循环小数为有理数,符合;C、为无理数,故本选项错误;D、不能正好开方,即为无理数,故本选项错误;故选B.【点睛】本题考查的知识点是实数范围内的有理数的判断,解题关键是从实际出发有理数有分数,自然数等,无理数有、根式下开不尽的从而得到了答案4、C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解因此本题需先根据两直线经过
14、的点的坐标,用待定系数法求出两直线的解析式然后联立两函数的解析式可得出所求的方程组【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:故选C【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式函数图象交点坐标为两函数解析式组成的方程组的解5、D【解析】找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
15、左视图有二列,从左往右分别有2,1个正方形;俯视图有三列,从上往下分别有3,1个正方形,故选A【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置掌握定义是关键此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键6、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,对称
16、轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键7、C【解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,据此可得详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.580.5分这一分组内,所以中位数落在70.580.5分故选C点睛:本题主要考查了频
17、数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数8、C【解析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂
18、的乘方很容易混淆,一定要记准法则才能做题.9、A【解析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱【详解】解:观察图形可知,这个几何体是三棱柱故选A【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键10、B【解析】分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.详解:因为-的相反数为所以-的绝对值为.故选:B点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.11、D【解析】试题分析:根据俯视图的作法即可得出结论从上往下看该几何体的俯视图是D故选D考点:简单几何
19、体的三视图.12、D【解析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2【解析】延长AC交x轴于B根据光的反射原理,点B、B关于y轴对称,CB=CB路径长就是AB的长度结合A点坐标,运用勾股定理求解【详解】解:如图所示,延长AC交x轴于B则点B、B关于y轴对称,CB=CB作ADx轴于D点则AD=3,DB=3+1=1由勾股定理AB
20、=2AC+CB = AC+CB= AB=2即光线从点A到点B经过的路径长为2考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键14、3a2b【解析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可【详解】分式与的最简公分母是3a2b故答案为3a2b【点睛】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.15、1【解析】解:DE是AB的垂直平分线,AD=BD=14,A=ABD=15,BDC=A+ABD=15+15=30在RtBCD中,BC=BD=14=1故答案为1点睛:本题考查了线段垂直平分线上的点到线段
21、两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键16、【解析】如图,连接EF,点E、点F是AD、DC的中点,AE=ED,CF=DF=CD=AB=1,由折叠的性质可得AE=AE,AE=DE,在RtEAF和RtEDF中, ,RtEAFRtEDF(HL),AF=DF=1,BF=BA+AF=AB+DF=2+1=3,在RtBCF中,BC=AD=BC=2 点睛:本题考查了翻折变换的知识,解答本题的关键是连接EF,证明RtEAFRtEDF,得出BF的长,再利用勾股定理解答即可17、A A的平均成绩高于B平均成绩 【解
22、析】根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,A比B更优秀,如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.18、或【解析】试题分析:AC=,因为矩形都相似,且每相邻两个矩形的相似比=,=21=2,=,=,=故答案为考点:1相似多边形的性质;2勾股定理;3规律型;4矩形的性质;5综合题三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)a=,b=2;(2)BC=【解析】试题分析:(1)首先利用反比
23、例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tanADF=,tanAEC=,进而求出m的值,即可得出答案试题解析:(1)点B(2,2)在函数y=(x0)的图象上,k=4,则y=,BDy轴,D点的坐标为:(0,2),OD=2,ACx轴,AC=OD,AC=3,即A点的纵坐标为:3,点A在y=的图象上,A点的坐标为:(,3),一次函数y=ax+b的图象经过点A、D,解得:,b=2;(2)设A点的坐标为:(m,),则C点的坐标为:(m,0),BDCE,且BCDE,四边形BCED为平行四边形,CE=BD=2,
24、BDCE,ADF=AEC,在RtAFD中,tanADF=,在RtACE中,tanAEC=,=,解得:m=1,C点的坐标为:(1,0),则BC=考点:反比例函数与一次函数的交点问题.20、(1);(2)ADDC=BD;(3)BD=AD=+1【解析】(1)根据全等三角形的性质求出DC,AD,BD之间的数量关系(2)过点B作BEBD,交MN于点EAD交BC于O,证明,得到, 根据为等腰直角三角形,得到,再根据,即可解出答案.(3)根据A、B、C、D四点共圆,得到当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大在DA上截取一点H,使得CD=DH=1,则易证,由即可得出答案.【详解】解:
25、(1)如图1中,由题意:,AE=CD,BE=BD,CD+AD=AD+AE=DE,是等腰直角三角形,DE=BD,DC+AD=BD,故答案为(2)证明:如图,过点B作BEBD,交MN于点EAD交BC于O,又,为等腰直角三角形,(3)如图3中,易知A、B、C、D四点共圆,当点D在线段AB的垂直平分线上且在AB的右侧时,ABD的面积最大此时DGAB,DB=DA,在DA上截取一点H,使得CD=DH=1,则易证,【点睛】本题主要考查全等三角形的性质,等腰直角三角形的性质以及图形的应用,正确作辅助线和熟悉图形特性是解题的关键.21、25%【解析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人
26、数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=25%,x2=(不符合题意,舍去)答:这两年中获奖人次的年平均年增长率为25%22、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得:
27、解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围
28、-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.23、(1)1、1,3、3,1、2;(2)见解析,1.【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得【详解】(1)如图所示,A1B1C1即为所求A1(1,1)B1(3,3),C1(1,2)故答案为:1、1、3、3、1、2;(2)如
29、图所示,CC1C2的面积是21=1故答案为:1【点睛】本题考查了作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质24、(1)E(2,1);(2);(1). 【解析】(1)先确定出点C坐标,进而得出点F坐标,即可得出结论;(2)先确定出点F的横坐标,进而表示出点F的坐标,得出CF,同理表示出CE,即可得出结论;(1)先判断出EHGGBF,即可求出BG,最后用勾股定理求出k,即可得出结论【详解】(1)OA=1,OB=4,B(4,0),C(4,1),F是BC的中点,F(4,),F在反比例y=函数图象上,k=4=6,反比例函数的解析式为y=,E点的坐标为1,E(2,1);(2)F点的横坐标为
30、4,F(4,),CF=BCBF=1=E的纵坐标为1,E(,1),CE=ACAE=4=,在RtCEF中,tanEFC=,(1)如图,由(2)知,CF=,CE=,过点E作EHOB于H,EH=OA=1,EHG=GBF=90,EGH+HEG=90,由折叠知,EG=CE,FG=CF,EGF=C=90,EGH+BGF=90,HEG=BGF,EHG=GBF=90,EHGGBF,BG=,在RtFBG中,FG2BF2=BG2,()2()2=,k=,反比例函数解析式为y=点睛:此题是反比例函数综合题,主要考查了待定系数法,中点坐标公式,相似三角形的判定和性质,锐角三角函数,求出CE:CF是解本题的关键25、(1)
31、=4;(2)=n【解析】试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;(2)第n个等式是:=n证明如下:= = =n第n个等式是:=n点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子26、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【解析】试题分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由
32、题意可知小明家6月份的水费是:(1.9+1)18+(2.85+1)7+(5.70+1)5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.试题解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)18+(
33、2.85+1)7+(5.70+1)5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18(1.9+1)+(x-18)(2.85+1)75.3,解得:x24,当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.27、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数【解
34、析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:3645%=80人;开私家车的人数m=8025%=20;扇形统计图中“骑自行车”的圆心角为.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可试题解析:解:(1)80,20,72.(2)骑自行车的人数为:8020%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,解得x50.答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用