《河北省沧州市献县市级名校2023届十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省沧州市献县市级名校2023届十校联考最后数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,正六边形ABCDEF内接于O,半径为4,则这个正
2、六边形的边心距OM的长为()A2B2CD42某反比例函数的图象经过点(-2,3),则此函数图象也经过( )A(2,-3)B(-3,3)C(2,3)D(-4,6)3如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分4函数y和y在第一象限内的图象如图,点P是y的图象上一动点,PCx轴于点C,交y的图象于点B给出如下结论:ODB与OCA的面积相等;PA与PB始终相等;四边形PAOB的面积大小不会发生变化;CAAP其中所有正确结论的序号是()ABCD5如图
3、,点C、D是线段AB上的两点,点D是线段AC的中点若AB=10cm,BC=4cm,则线段DB的长等于()A2cmB3cmC6cmD7cm63月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战将数据30亿用科学记数法表示为()A3109B3108C30108D0.310107下列各式中,正确的是( )At5t5 = 2t5 Bt4+t2 = t 6 Ct3t4 = t12 Dt2t3 = t58如图,点D(0,3),O(0,0),C(4,0)在A上,BD是A
4、的一条弦,则cosOBD()ABCD9如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()ABCD10若,则的值为( )A12B2C3D0二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在ABCD中,E、F分别是AB、DC边上的点,AF与DE相交于点P,BF与CE相交于点Q,若SAPD16cm1,SBQC15cm1,则图中阴影部分的面积为_cm112如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_13如图,AOB是直角三角形,AOB90,OB
5、2OA,点A在反比例函数y的图象上若点B在反比例函数y的图象上,则k的值为_14若关于x的方程x2-mx+m=0有两个相等实数根,则代数式2m2-8m+3的值为_15在ABCD中,AB=3,BC=4,当ABCD的面积最大时,下列结论:AC=5;A+C=180o;ACBD;AC=BD其中正确的有_(填序号)16已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一
6、象限(1)求该抛物线的解析式;(2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;(3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标18(8分)如图,点B、E、C、F在同一条直线上,ABDE,ACDF,BECF,求证:ABDE19(8分)在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称(1)求直线BC的解析式;(2)点D在抛物线上,且点D的横坐标为1将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围20(8分)已知二次函数y=x2-4x-5,与y轴的交点为P,与x轴
7、交于A、B两点(点B在点A的右侧)(1)当y=0时,求x的值(2)点M(6,m)在二次函数y=x2-4x-5的图像上,设直线MP与x轴交于点C,求cotMCB的值21(8分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字1、0、2,它们除了数字不同外,其他都完全相同随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为 ;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边
8、界)的概率22(10分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少
9、?23(12分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24先化简,再求值(x),其中x=参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据
10、锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60,OC=OB,BOC是等边三角形,OBM=60,OM=OBsinOBM=42.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键2、A【解析】设反比例函数y=(k为常数,k0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断【详解】设反比例函数y=(k为常数,k0),反比例函数的图象经过点(-2,3),k=-23=-6,而2(-3)=-6,(-3)(-3)=9,23
11、=6,-46=-24,点(2,-3)在反比例函数y=- 的图象上故选A【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k3、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证
12、明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.4、C【解析】解:A、B是反比函数上的点,SOBD=SOAC=,故正确;当P的横纵坐标相等时PA=PB,故错误;P是的图象上一动点,S矩形PDOC=4,S四边形PAOB=S矩形PDOCSODBSOAC=4=3,故正确;连接OP,=4,AC=PC,PA=PC,=3,AC=AP;故正确;综上所述,正确的结论有故选C点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是
13、解答此题的关键5、D【解析】【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.6、A【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】将数据30亿用科学记数法表示为,故选
14、A【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值7、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.8、C【解析】根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.【详解】D(0,3),C(4,0),OD3,OC4,COD90,CD 5,连接CD,如图所示:OBDOCD,cosOBDcosOCD 故选:C【点睛】本题主要三角函数的计算,结合考查
15、圆性质的计算,关键在于利用等量替代原则.9、D【解析】连接OC,过点A作ADCD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知AOC是等边三角形,可得AOC=BOC=60,故ACO与BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OAsin60=2=,因此可求得S阴影=S扇形AOB2SAOC=22=2故选D点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键10、A【解析】先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和
16、整体代入法是解题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、41【解析】试题分析:如图,连接EFADF与DEF同底等高,SADF=SDEF,即SADF-SDPF=SDEF-SDPF,即SAPD=SEPF=16cm1,同理可得SBQC=SEFQ=15cm1,、阴影部分的面积为SEPF+SEFQ=16+15=41cm1考点:1、三角形面积,1、平行四边形12、1【解析】骑车的学生所占的百分比是100%=35%,步行的学生所占的百分比是110%15%35%=40%,若该校共有学生1500人,则据此估计步行的有150040%=1(人),故答案为113、2【解析】要求函数的解析式只要
17、求出B点的坐标就可以,过点A,B作ACx轴,BDx轴,分别于C,D根据条件得到ACOODB,得到:=1,然后用待定系数法即可【详解】过点A,B作ACx轴,BDx轴,分别于C,D设点A的坐标是(m,n),则AC=n,OC=mAOB=90,AOC+BOD=90DBO+BOD=90,DBO=AOCBDO=ACO=90,BDOOCA,OB=1OA,BD=1m,OD=1n因为点A在反比例函数y=的图象上,mn=1点B在反比例函数y=的图象上,B点的坐标是(-1n,1m)k=-1n1m=-4mn=-2故答案为-2【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求
18、得点B的坐标(用含n的式子表示)是解题的关键14、1【解析】根据方程的系数结合根的判别式即可得出=m24m=0,将其代入2m28m+1中即可得出结论【详解】关于x的方程x2mx+m=0有两个相等实数根,=(m)24m=m24m=0,2m28m+1=2(m24m)+1=1故答案为1【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键15、【解析】由当ABCD的面积最大时,ABBC,可判定ABCD是矩形,由矩形的性质,可得正确,错误,又由勾股定理求得AC=1【详解】当ABCD的面积最大时,ABBC,ABCD是矩形,A=C=90,AC=BD,故错误,正确;A+C
19、=180;故正确;AC=1,故正确故答案为:【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理注意证得ABCD是矩形是解此题的关键16、y3y1y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,y3y1y2.考点:二次函数的函数值比较大小.三、解答题(共8题,共72分)17、(1);(2);(3)或【解析】(1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;(2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法
20、求出一次函数解析式;(3)利用三角形相似求出ABCPBF,即可求出圆的半径,即可得出P点的坐标【详解】(1)抛物线的图象经过,把,代入得:解得:,抛物线解析式为;(2)抛物线改写成顶点式为,抛物线对称轴为直线,对称轴与轴的交点C的坐标为,设点B的坐标为,则,点B的坐标为,设直线解析式为:,把,代入得:,解得:,直线解析式为:(3)当点P在抛物线的对称轴上,P与直线AB和x轴都相切,设P与AB相切于点F,与x轴相切于点C,如图1;PFAB,AF=AC,PF=PC,AC=1+2=3,BC=4,AB=5,AF=3,BF=2,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2
21、,);设P与AB相切于点F,与轴相切于点C,如图2:PFAB,PF=PC,AC=3,BC=4, AB=5,FBP=CBA,BFP=BCA=90,ABCPBF,解得:,点P的坐标为(2,-6),综上所述,与直线和都相切时,或【点睛】本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键18、详见解析.【解析】试题分析:利用SSS证明ABCDEF,根据全等三角形的性质可得B=DEF,再由平行线的判定即可得ABDE试题解析:证明:由BECF可得BCEF,又ABDE,ACDF,故ABC
22、DEF(SSS),则B=DEF,ABDE考点:全等三角形的判定与性质.19、(1)(2)【解析】试题分析:(1)首先根据抛物线求出与轴交于点A,顶点为点B的坐标,然后求出点A关于抛物线的对称轴对称点C的坐标,设设直线BC的解析式为代入点B,点C的坐标,然后解方程组即可;( 2)求出点D、E、F的坐标,设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1;当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2从而得出.试题解析:解:(1)抛物线与轴交于点A,点A的坐标为(0,2) 1分,抛物线的对称轴为直线,顶点B的坐标为(1,
23、) 2分又点C与点A关于抛物线的对称轴对称, 点C的坐标为(2,2),且点C在抛物线上设直线BC的解析式为直线BC经过点B(1,)和点C(2,2),解得直线BC的解析式为 2分(2)抛物线中,当时,点D的坐标为(1,6) 1分直线中,当时,当时,如图,点E的坐标为(0,1),点F的坐标为(1,2)设点A平移后的对应点为点,点D平移后的对应点为点当图象G向下平移至点与点E重合时, 点在直线BC上方,此时t=1; 5分当图象G向下平移至点与点F重合时,点在直线BC下方,此时t=2 6分结合图象可知,符合题意的t的取值范围是 7分考点:1.二次函数的性质;2.待定系数法求解析式;2.平移.20、(1
24、),;(2)【解析】(1)当y=0,则x2-4x-5=0,解方程即可得到x的值.(2) 由题意易求M,P点坐标,再求出MP的直线方程,可得cotMCB.【详解】(1)把代入函数解析式得,即,解得:,. (2)把代入得,即得,二次函数,与轴的交点为,点坐标为. 设直线的解析式为,代入,得解得, 点坐标为, 在中,又.【点睛】本题考查的知识点是抛物线与x轴的交点,二次函数的性质,解题的关键是熟练的掌握抛物线与x轴的交点,二次函数的性质.21、(1);(2)列表见解析,.【解析】试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)
25、利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:小华小丽-102-1(-1,-1)(-1,0)(-1,2)0(0,-1)(0,0)(0,2)2(2,-1)(2,0)(2,2)共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,P(点M落在如图所示的正方形网格内)=.考点:1列表或树状图求概率;2平面直角坐标系.22、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解析】
26、(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=【点睛】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.23、(1)3,补图详见解析;(2)【解析】(1)总人数=3它所占全体团员的百分比;发4
27、条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占,故该班团员人数为:(人),则发4条箴言的人数为:(人),所以本月该班团员所发的箴言共(条),则平均所发箴言的条数是:(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键24、6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【详解】原式=,当x=,原式=6.【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.