《江西省上饶市余干县重点达标名校2023年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江西省上饶市余干县重点达标名校2023年中考一模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在ABC中,AD和BE是高,ABE=45,点F是AB的中点,AD与FE,BE分别交于点G、HCBE=BAD,有下列结论:FD=FE;AH=2CD
2、;BCAD=AE2;SBEC=SADF其中正确的有()A1个B2个C3个D4个2全球芯片制造已经进入10纳米到7纳米器件的量产时代中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米数据0.000000007用科学记数法表示为()A0.7108B7108C7109D710103如图,边长为1的小正方形构成的网格中,半径为1的O的圆心O在格点上,则BED的正切值等于()ABC2D4下列运算正确的是()A(a2)4=a6Ba2a3=a6CD5|3|的值是( )A3BC3D6如图,D是等边ABC边AD上的一点,且AD:DB=1:2,现将ABC折叠
3、,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=( )ABCD7不等式组的解集在数轴上可表示为()ABCD82017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为()A5.46108B5.46109C5.461010D5.4610119如图,直角三角形ABC中,C=90,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为( )A2B+C+2D2210下列实数中,无理数是()A3.14B1.01001CD二、填空题(共7小题,每小题3分,满分21分)11已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_12有两个
4、一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_(填写序号)如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;如果方程M有两根符号相同,那么方程N的两根符号也相同;如果方程M和方程N有一个相同的根,那么这个根必是x=1;如果5是方程M的一个根,那么是方程N的一个根13分解因式:a2-2ab+b2-1=_14在中,,,点分别是边的中点,则的周长是_15竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,若小球经过秒落地,则小球在上抛的过程中,第_秒时离地面最高16如图,四边形ABCD内接
5、于O,AB是O的直径,过点C作O的切线交AB的延长线于点P,若P40,则ADC_17如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_三、解答题(共7小题,满分69分)18(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数19(5分)在数学课上,老师提出如下问题:小楠同学的作
6、法如下:老师说:“小楠的作法正确”请回答:小楠的作图依据是_20(8分)如图,已知ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F, (1)判断ABC的形状,并证明你的结论;(2)如图1,若BE=CE=,求A的面积;(3)如图2,若tanCEF=,求cosC的值.21(10分)如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率22(10分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线
7、对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.23(12分)已知:如图,ABCD中,BD是对角线,AEBD于E,CFBD于F. 求证:BE=DF.24(14分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据题意和图形
8、,可以判断各小题中的结论是否成立,从而可以解答本题【详解】在ABC中,AD和BE是高,ADB=AEB=CEB=90,点F是AB的中点,FD=AB,FE=AB,FD=FE,正确;CBE=BAD,CBE+C=90,BAD+ABC=90,ABC=C,AB=AC,ADBC,BC=2CD,BAD=CAD=CBE,在AEH和BEC中, ,AEHBEC(ASA),AH=BC=2CD,正确;BAD=CBE,ADB=CEB,ABDBCE,即BCAD=ABBE,AEB=90,AE=BE,AB=BEBCAD=BEBE,BCAD=AE2;正确;设AE=a,则AB=a,CE=aa,=, 即 ,AF=AB, ,SBECS
9、ADF,故错误,故选:C【点睛】本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、C【解析】本题根据科学记数法进行计算.【详解】因为科学记数法的标准形式为a(1|a|10且n为整数),因此0.000000007用科学记数法法可表示为7,故选C.【点睛】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键.3、D【解析】根据同弧或等弧所对的圆周角相等可知BED=BAD,再结合图形根据正切的定义进行求解即可得.【详解】DAB=DEB,tanDEB= tanDAB=,故选D【点睛】本题考
10、查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键4、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.5、A【解析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.6、B【解析】
11、解:由折叠的性质可得,EDF=C=60,CE=DE,CF=DF再由BDF+ADE=BDF+BFD=120可得ADE=BFD,又因A=B=60,根据两角对应相等的两三角形相似可得AEDBDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE=DE=x,CF=DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay,xy=3ay-2ax;把代入可得3ax-ay=3ay-2ax,所以5ax=4ay,即故选B【点睛】本题考查相似三角形的判定及性质7、A【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解: 不等式
12、得:x1,解不等式得:x2,不等式组的解集为1x2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.8、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:将546亿用科学记数法表示为:5.461010 ,故本题选C.【点睛】本题考查的是科学计数法,熟练掌握它的定义是解题的关键.9、D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -SABC,然后根据扇
13、形面积公式和三角形面积公式计算即可.详解:连接CDC=90,AC=2,AB=4,BC=2阴影部分的面积= S半圆ACD +S半圆BCD -SABC= =.故选:D点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -SABC是解答本题的关键.10、C【解析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得【详解】A、3.14是有理数;B、1.01001是有理数;C、是无理数;D、是分数,为有理数;故选C【点睛】本题主要考查无理数的定义,属于简单题二、填空题(共7小题,每小题3分,满分21分)11、等【
14、解析】根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,所以解析式满足a0,b=0,c=0即可【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a0,b=0,c=0,例如:.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.12、【解析】试题解析:在方程ax2+bx+c=0中=b2-4ac,在方程cx2+bx+a=0中=b2-4ac,如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;和符号相同,和符号也相同,如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;、M-N得:(a-c)x
15、2+c-a=0,即(a-c)x2=a-c,ac,x2=1,解得:x=1,错误;5是方程M的一个根,25a+5b+c=0,a+b+c=0,是方程N的一个根,正确故正确的是13、 (ab1)(ab1)【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解【详解】a2-2ab+b2-1,=(a-b)2-1,=(a-b+1)(a-b-1)【点睛】本题考查用分组分解法进行因式分解难点是采用两两分组还是三一分组本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底14、【解析】首先利用勾股定理求得斜边长,然后利用三角
16、形中位线定理求得答案即可【详解】解:RtABC中,C=90,AC=3,BC=4,AB=5,点D、E、F分别是边AB、AC、BC的中点,DE=BC,DF=AC,EF=AB,CDEF=DE+DF+EF=BC +AC +AB = (BC+AC+AB)=(4+3+5)=6.故答案为:6.【点睛】本题考查了勾股定理和三角形中位线定理.15、.【解析】首先根据题意得出m的值,进而求出t的值即可求得答案【详解】竖直上抛的小球离地面的高度 h(米)与时间 t(秒)的函数关系式为 h2t2+mt+,小球经过秒落地,t时,h0,则02()2+m+,解得:m,当t时,h最大,故答案为:【点睛】本题考查了二次函数的应
17、用,正确得出m的值是解题关键16、115【解析】根据过C点的切线与AB的延长线交于P点,P=40,可以求得OCP和OBC的度数,又根据圆内接四边形对角互补,可以求得D的度数,本题得以解决【详解】解:连接OC,如右图所示,由题意可得,OCP=90,P=40,COB=50,OC=OB,OCB=OBC=65,四边形ABCD是圆内接四边形,D+ABC=180,D=115,故答案为:115【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件17、【解析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出AD、OD的长度,即可解决问题【详解】解:四边形OA
18、BC是矩形,OA=BC,AB=OC,tanBOC=,AB=2OA,OB=,OA=2,AB=2OA由OA翻折得到,OA= OA=2如图,过点A作ADx轴与点D;设AD=a,OD=b;四边形ABCO为矩形,OAB=OCB=90;四边形ABAD为梯形;设AB=OC=a,BC=AO=b;OB=,tanBOC=,解得: ;由题意得:AO=AO=2;ABOABO;由勾股定理得:x2+y2=2,由面积公式得:xy+222(x+2)(y+2);联立并解得:x=,y=故答案为(,)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题
19、解决问题的能力提出了较高的要求三、解答题(共7小题,满分69分)18、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)410%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1(2)观察条形统计图,这组数据的平均数为15;在这组数据中,16出现了12次,出现的次数最多,这组数据的众数为16;将这组数据按
20、照从小到大的顺序排列,其中处于中间的两个数都是15,有,这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键19、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【解析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据【详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边
21、形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定和性质20、 (1) ABC为直角三角形,证明见解析;(2)12;(3).【解析】(1)由,得CEFCBE,CBE=CEF,由BD为直径,得ADE+ABE=90,即可得DBC=90故ABC为直角三角形.(2)设EBC=E
22、CB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30,则ABE=60故AB=BE=,则可求出求A的面积;(3)由(1)知D=CFE=CBE,故tanCBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FKBD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tanC 再求出cosC即可.【详解】解:,CEFCBE,CBE=CEF,AE=AD,ADE=AED=FEC=CBE,BD为直径,ADE+ABE=90,CBE+ABE=90,DBC=90ABC为直角三角形.(2)BE=CE设EBC=ECB=x,BDE=EBC=x,AE
23、=ADAED=ADE=x,CEF=AED=xBFE=2x在BDF中由内角和可知:3x=90x=30ABE=60AB=BE=(3)由(1)知:D=CFE=CBE,tanCBE=,设EF=a,BE=2a,BF=,BD=2BF=,AD=AB=,,DE=2BE=4a,过F作FKBD交CE于K,, , tanC cosC.【点睛】此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.21、 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌
24、上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率22、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y
25、轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析式为,(2),对称轴为直线x=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.23、(1)证明:ABCD是平行四边形AB=CD ABCD ABE=CDF 又AEBD,CFBDAEB=CFD=ABECDF BE=DF【解析】证明:在ABCD中ABCDABE=CDF4分AEBD CFBDAEB=CFD=9005分AB=CDABECDF6分BE=DF24、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点,DE为ABC的中位线,DE=BC=