江苏省镇江市东部教育集团2022-2023学年中考数学五模试卷含解析.doc

上传人:茅**** 文档编号:88305908 上传时间:2023-04-25 格式:DOC 页数:25 大小:1,003.50KB
返回 下载 相关 举报
江苏省镇江市东部教育集团2022-2023学年中考数学五模试卷含解析.doc_第1页
第1页 / 共25页
江苏省镇江市东部教育集团2022-2023学年中考数学五模试卷含解析.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《江苏省镇江市东部教育集团2022-2023学年中考数学五模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省镇江市东部教育集团2022-2023学年中考数学五模试卷含解析.doc(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABCD,那么()ABAD与B互补B1=2CBAD与D互补DBCD与D互补2下列说法错误的是()A的相反数是2B3的倒数是CD,0,4这三个数中最小的数是03在数轴上表示不等式2(1x)4的解集,正确的是()ABCD

2、4如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定5将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD6某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28109B2.8108C2.8109D2.810107一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是( )ABCD8某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数

3、分别为()A24.5,24.5B24.5,24C24,24D23.5,249如图,在ABC中,ACB=90,点D为AB的中点,AC=3,cosA=,将DAC沿着CD折叠后,点A落在点E处,则BE的长为()A5B4C7D510BAC放在正方形网格纸的位置如图,则tanBAC的值为()ABCD二、填空题(共7小题,每小题3分,满分21分)11若正六边形的边长为2,则此正六边形的边心距为_12如图,将一块含有30角的直角三角板的两个顶点叠放在长方形的两条对边上,如果1=27,那么2=_13如图,在直角坐标平面xOy中,点A坐标为,AB与x轴交于点C,那么AC:BC的值为_14不等式52x1的解集为_

4、15如图所示,某办公大楼正前力有一根高度是15米的旗杆ED,从办公楼顶点A测得族杆顶端E的俯角是45,旗杆底端D到大楼前梯坎底端C的距离DC是20米,梯坎坡长BC是13米,梯坎坡度i=1:2.4,则大楼AB的高度的为_米16如图,在ABC中,C90,AC8,BC6,点D是AB的中点,点E在边AC上,将ADE沿DE翻折,使点A落在点A处,当AEAC时,AB_17在RtABC中,ACB=90,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_三、解答题(共7小题,满分69分)18(10分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,

5、这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?19(5分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P

6、的坐标20(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)21(10分)已知:如图,在梯形ABCD中,ABCD,D90,ADCD2,点E在边AD上(不与点A、D重合),CEB45,EB与对角线AC相交于点F,设DEx(1

7、)用含x的代数式表示线段CF的长;(2)如果把CAE的周长记作CCAE,BAF的周长记作CBAF,设y,求y关于x的函数关系式,并写出它的定义域;(3)当ABE的正切值是 时,求AB的长22(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF已知BC=1(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,PFM的形状是否发生变化?请说明理由;求PFM的周长的取值范围23(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点求反比

8、例函数和一次函数的解析式;直接写出当x0时,的解集点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小24(14分)如图,AB是O的直径,BC交O于点D,E是弧的中点,AE与BC交于点F,C=2EAB求证:AC是O的切线;已知CD=4,CA=6,求AF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】分清截线和被截线,根据平行线的性质进行解答即可【详解】解:ABCD,BAD与D互补,即C选项符合题意;当ADBC时,BAD与B互补,1=2,BCD与D互补,故选项A、B、D都不合题意,故选:C【点睛】本题考查了平行线的性质,熟记性质并准确识图是解题的

9、关键2、D【解析】试题分析:2的相反数是2,A正确;3的倒数是,B正确;(3)(5)=3+5=2,C正确;11,0,4这三个数中最小的数是11,D错误,故选D考点:1相反数;2倒数;3有理数大小比较;4有理数的减法3、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变4、A【解析】直接利用圆周角定理

10、结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键5、A【解析】分析:面动成体由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转6、D【解析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1a10,n为整数

11、)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.81010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.7、B【解析】根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2(|k|)=1故选B【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义

12、图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|8、A【解析】【分析】根据众数和中位数的定义进行求解即可得【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.9、C【解析】连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可【详解】解:连

13、接AE,AC=3,cosCAB=,AB=3AC=9,由勾股定理得,BC=6,ACB=90,点D为AB的中点,CD=AB=,SABC=36=9,点D为AB的中点,SACD=SABC=,由翻转变换的性质可知,S四边形ACED=9,AECD,则CDAE=9,解得,AE=4,AF=2,由勾股定理得,DF=,AF=FE,AD=DB,BE=2DF=7,故选C【点睛】本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等10、D【解析】连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明A

14、DC=90,再利用三角函数定义可得答案【详解】连接CD,如图:,CD=,AC=,ADC=90,tanBAC=故选D【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明ADC=90二、填空题(共7小题,每小题3分,满分21分)11、.【解析】连接OA、OB,根据正六边形的性质求出AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可【详解】连接OA、OB、OC、OD、OE、OF,正六边形ABCDEF,AOB=BOC=COD=DOE=EOF=AOF,AOB=60,OA=OB,AOB是等边三角形,OA=OB=AB=2,ABOM,AM=BM=1,在OAM中,

15、由勾股定理得:OM=12、57.【解析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得21+30=27+30=57.【点睛】本题考查平行线的性质及三角形外角的性质.13、【解析】过点A作ADy轴,垂足为D,作BEy轴,垂足为E.先证ADOOEB,再根据OAB30求出三角形的相似比,得到OD:OE=2,根据平行线分线段成比例得到AC:BC=OD:OE=2=【详解】解:如图所示:过点A作ADy轴,垂足为D,作BEy轴,垂足为E.OAB30,ADE90,DEB90DOA+BOE90,OBE+BOE90DOA=OBEADOOEBOAB30,AOB90,OAOB=点A坐

16、标为(3,2)AD=3,OD=2ADOOEBOEOCADBE根据平行线分线段成比例得:AC:BC=OD:OE=2=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.14、x1【解析】根据不等式的解法解答.【详解】解:, .故答案为【点睛】此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.15、42【解析】延长AB交DC于H,作EGAB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明AEG是等腰直角三角形,得出AG=EG=12+2

17、0=32(米),即可得出大楼AB的高度【详解】延长AB交DC于H,作EGAB于G,如图所示:则GH=DE=15米,EG=DH, 梯坎坡度i=1:2.4,BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在RtBCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,BH=5米,CH=12米,BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),=45,EAG=90-45=45,AEG是等腰直角三角形,AG=EG=32(米),AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题

18、;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键16、或7 【解析】分两种情况:如图1, 作辅助线, 构建矩形, 先由勾股定理求斜边AB=10, 由中点的定义求出AD和BD的长, 证明四边形HFGB是矩形, 根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得: DA E=A,A D=AD=5, 由矩形性质和勾股定理可以得出结论: A B=;如图2, 作辅助线, 构建矩形A MNF,同理可以求出A B的长.【详解】解:分两种情况:如图1, 过D作DGBC与G, 交A E与F, 过B作BHA E与H,D为AB的中点,BD=AB=AD,C=,AC=8,BC=6,AB=10,BD

19、=AD=5,sin ABC=,DG=4,由翻折得: DA E=A, A D=AD=5,sinDA E=sin A=.DF=3,FG=4-3=1,AEAC,BCAC,AE/BC,HFG+DGB=,DGB=,HFG=,EHB=,四边形HFGB是矩形,BH=FG=1,同理得: A E=AE=8 -1=7,AH=AE-EH=7-6=1,在RtAHB中 , 由勾股定理得: A B=. 如图2, 过D作MN/AC, 交BC与于N,过A 作A F/AC, 交BC的延长线于F,延长A E交直线DN于M, AEAC,A MMN, A EAF,M=MAF=,ACB=,F=ACB=,四边形MA FN県矩形,MN=A

20、F,FN=AM,由翻折得: A D=AD=5,RtAMD中,DM=3,AM=4,FN=AM=4,RtBDN中,BD=5,DN=4, BN=3,A F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,RtABF中, 由勾股定理得: A B=;综上所述,AB的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.17、1【解析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在CEM中根据三边关系即可求解【详解】作AB的中点E,连接EM、CE,在直角ABC中,AB=10,E是直角A

21、BC斜边AB上的中点,CE=AB=5,M是BD的中点,E是AB的中点,ME=AD=2,在CEM中,5-2CM5+2,即3CM1,最大值为1,故答案为1【点睛】本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答三、解答题(共7小题,满分69分)18、(1)详见解析;(2)4分.【解析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:1234分.【点睛】本题

22、考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.19、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-

23、1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1,P(1+,-3),或(1-,-3),综上可知:

24、点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键20、 【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B(A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为【点睛】本题考查了列表法和树状图法

25、,用到的知识点为:概率=所求情况数与总情况数之比21、(1)CF=;(2)y=(0x2);(3)AB=2.5.【解析】试题分析:(1)根据等腰直角三角形的性质,求得DAC=ACD=45,进而根据两角对应相等的两三角形相似,可得CEFCAE,然后根据相似三角形的性质和勾股定理可求解;(2)根据相似三角形的判定与性质,由三角形的周长比可求解;(3)由(2)中的相似三角形的对应边成比例,可求出AB的关系,然后可由ABE的正切值求解.试题解析:(1)AD=CDDAC=ACD=45,CEB=45,DAC=CEB,ECA=ECA,CEFCAE,在RtCDE中,根据勾股定理得,CE= ,CA=,CF=;(2

26、)CFE=BFA,CEB=CAB,ECA=180CEBCFE=180CABBFA,ABF=180CABAFB,ECA=ABF,CAE=ABF=45,CEABFA,(0x2),(3)由(2)知,CEABFA,AB=x+2,ABE的正切值是,tanABE=,x=,AB=x+2=22、(1)CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由见解析;PFM的周长满足:2+2(1+)y1+1【解析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)PFM的形状是等腰直角三角形,想办法证明POFMOC,可

27、得PFO=MCO=15,延长即可解决问题;设FM=y,由勾股定理可知:PF=PM=y,可得PFM的周长=(1+)y,由2y1,可得结论【详解】(1)M为AC的中点,CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,FM2=CF2+CM2,即(1x)2=x2+22,解得,x=,即CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,PMF=B=15,CD是中垂线,ACD=DCF=15,MPC=OPM,POMPMC,=,=,EMC=AEM+A=CMF+EMF,AEM=CMF,DPE+AEM=90,CMF+MFC=90

28、,DPE=MPC,DPE=MFC,MPC=MFC,PCM=OCF=15,MPCOFC, ,POF=MOC,POFMOC,PFO=MCO=15,PFM是等腰直角三角形;PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,PFM的周长=(1+)y,2y1,PFM的周长满足:2+2(1+)y1+1【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型23、(1),yx+5;(2)0x1或x4;(3)P的坐标为(,0),见解析.【解析】(1)把A(1,4)

29、代入y,求出m4,把B(4,n)代入y,求出n1,然后把把A(1,4)、(4,1)代入ykx+b,即可求出一次函数解析式;(2)根据图像解答即可;(3)作B关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,然后用待定系数法求出直线AB的解析式即可.【详解】解:(1)把A(1,4)代入y,得:m4,反比例函数的解析式为y;把B(4,n)代入y,得:n1,B(4,1),把A(1,4)、(4,1)代入ykx+b,得:,解得:,一次函数的解析式为yx+5;(2)根据图象得当0x1或x4,一次函数yx+5的图象在反比例函数y的下方;当x0时,kx+b的解集为0x1或x4;(3)如图,作B

30、关于x轴的对称点B,连接AB,交x轴于P,此时PA+PBAB最小,B(4,1),B(4,1),设直线AB的解析式为ypx+q,解得,直线AB的解析式为,令y0,得,解得x,点P的坐标为(,0)【点睛】本题考查了待定系数法求反比例函数及一次函数解析式,利用图像解不等式,轴对称最短等知识.熟练掌握待定系数法是解(1)的关键,正确识图是解(2)的关键,根据轴对称的性质确定出点P的位置是解答(3)的关键.24、(1)证明见解析(2)2【解析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到由于则,再利用圆周角定理得到则所以于是根据切线的判定定理得到AC是O的切线;先求出的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD,如图,E是的中点, AB是O的直径, 即 AC是O的切线;(2) ,【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁