江苏省苏州市工业园区达标名校2022-2023学年中考数学仿真试卷含解析.doc

上传人:茅**** 文档编号:88305904 上传时间:2023-04-25 格式:DOC 页数:16 大小:684.50KB
返回 下载 相关 举报
江苏省苏州市工业园区达标名校2022-2023学年中考数学仿真试卷含解析.doc_第1页
第1页 / 共16页
江苏省苏州市工业园区达标名校2022-2023学年中考数学仿真试卷含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《江苏省苏州市工业园区达标名校2022-2023学年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市工业园区达标名校2022-2023学年中考数学仿真试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1二次函数的最大值为( )A3B4C5D62二次函数y=ax2+bx2(a0)的图象的顶点在第三象限,且过点(1,0),设t=ab2,则t值的变化范围是()A2t0B3t0C4t2D4t03估计的值在( )A2和3之间B3和4之间C4

2、和5之间D5和6之间4如图,在ABC中,AB=5,AC=4,A=60,若边AC的垂直平分线DE交AB于点D,连接CD,则BDC的周长为()A8B9C5+D5+5已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()ABCD6若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D77如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A10B15C20D308一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球两次都摸到红球的概率是( )ABCD9若二次函数的图象经过点(1,0),则方程的

3、解为( )A,B,C,D,10方程的解为()Ax=4Bx=3Cx=6D此方程无解二、填空题(共7小题,每小题3分,满分21分)11如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转度得矩形ABCD,点C落在AB的延长线上,则图中阴影部分的面积是_12若正n边形的内角为,则边数n为_.13如图,在ABC中,ACB=90,AB=8,AB的垂直平分线MN交AC于D,连接DB,若tanCBD=,则BD=_14若一个多边形的内角和是900,则这个多边形是 边形15已知二次函数与一次函数的图象相交于点,如图所示,则能使成立的x的取值范围是_16如图,正ABC 的边长为 2,顶点 B、C 在

4、半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第 2017 次旋转时,BC 边共回到原来位置 次17如图,AGBC,如果AF:FB3:5,BC:CD3:2,那么AE:EC_三、解答题(共7小题,满分69分)18(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(4,

5、0),B (1,0)两点,与y轴交于点C(1)求这个二次函数的解析式;(2)连接AC、BC,判断ABC的形状,并证明;(3)若点P为二次函数对称轴上点,求出使PBC周长最小时,点P的坐标19(5分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,ADBC,C=90,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且

6、PE=2,求四边形PADC面积的最值20(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图请结合以上信息解答下列问题:m= ;请补全上面的条形统计图;在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动21(10分)如图,AB是O的直径,点C是O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分ACB,交AB点F,连接BE(1)求证:AC平分DAB;(2)求证:PCPF;(3)若tanABC,AB14,

7、求线段PC的长22(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.23(12分)如图,直线y=x+2与双曲线y=相交于点A(m,3),与x轴交于点C求双曲线的解析式;点P在x轴上,如果ACP的面积

8、为3,求点P的坐标24(14分)孙子算经是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣孙子算经记载“今有妇人河上荡杯津吏问曰:杯何以多?妇人曰:家有客津吏曰:客几何?妇人曰:二人共饭,三人共羹,四人共肉,凡用杯六十五不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值2、D【解析】由二次

9、函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围【详解】解:二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)该函数是开口向上的,a0y=ax2+bx2过点(1,0),a+b-2=0.a0,2-b0.顶点在第三象限,-0.2-a0.0b2.0a2.t=a-b-2.4t0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3、D【解析】寻找小于26的最大平方数和大于26的最小平方数即可.【详解】解:小于26的最大平方数

10、为25,大于26的最小平方数为36,故,即:,故选择D.【点睛】本题考查了二次根式的相关定义.4、C【解析】过点C作CMAB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.【详解】过点C作CMAB,垂足为M,在RtAMC中,A=60,AC=4,AM=2,MC=2,BM=AB-AM=3,在RtBMC中,BC=,DE是线段AC的垂直平分线,AD=DC,A=60,ADC等边三角形,CD=AD=AC=4,BDC的周长=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案选C.【点睛】本题考查了勾股定理,解题的

11、关键是熟练的掌握勾股定理的运算.5、B【解析】2a=3b, , ,A、C、D选项错误,B选项正确,故选B.6、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.7、B【解析】由三视图可知此几何体为圆锥,圆锥的底面半径为3,母线长为5,圆锥的底面周长等于圆锥的侧面展开扇形的弧长,圆锥的底面周长=圆锥的侧面展开扇形的弧长=2r=23=6,圆锥的侧面积=lr=65=15,故选B8、A【解析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红红红绿绿红(红,红

12、)(红,红)(绿,红)(绿,绿)红(红,红)(红,红)(绿,红)(绿,红)红(红,红)(红,红)(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)所有等可能的情况数为20种,其中两次都为红球的情况有6种,故选A.9、C【解析】二次函数的图象经过点(1,0),方程一定有一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点10、C【解析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.【详解】方程两边同时乘以x2得到1(x2)3,解得x6.将x

13、6代入x2得624,x6就是原方程的解.故选C【点睛】本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】在矩形ABCD中,AB=,DAC=60,DC=,AD=1由旋转的性质可知:DC=,AD=1,tanDAC=,DAC=60BAB=30,SABC=1=,S扇形BAB=S阴影=SABC-S扇形BAB=-故答案为-【点睛】错因分析中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出的值.12、9【解析】分析:根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和

14、定理列出方程进行解答即可.详解:由题意可得:140n=180(n-2),解得:n=9.故答案为:9.点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).13、2【解析】由tanCBD= 设CD=3a、BC=4a,据此得出BD=AD=5a、AC=AD+CD=8a,由勾股定理可得(8a)2+(4a)2=82,解之求得a的值可得答案【详解】解:在RtBCD中,tanCBD=,设CD=3a、BC=4a,则BD=AD=5a,AC=AD+CD=5a+3a=8a,在RtABC中,由勾股定理可得(8a)2+(4a)2=82,解得:a= 或a=-(舍),则

15、BD=5a=2,故答案为2【点睛】本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,勾股定理的应用,解题关键是熟记性质与定理并准确识图14、七【解析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.15、x<-2或x>1【解析】试题分析:根据函数图象可得:当时,x2或x1考点:函数图象的性质16、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决因为ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.0

16、8,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45;同理可证:OBA=45,ABC=90;ABC=60,ABA=90-60=30,CBC=ABA=30,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形结合的思想解决问题,循环从特殊到一般的探究方

17、法,所以中考填空题中的压轴题17、3:2;【解析】由AG/BC可得AFG与BFD相似 ,AEG与CED相似,根据相似比求解.【详解】假设:AF3x,BF5x ,AFG与BFD相似AG3y,BD5y由题意BC:CD3:2则CD2yAEG与CED相似AE:EC AG:DC3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.三、解答题(共7小题,满分69分)18、(1)抛物线解析式为y=x2x+2;(2)ABC为直角三角形,理由见解析;(3)当P点坐标为(,)时,PBC周长最小【解析】(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析

18、式;(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断ABC为直角三角形;(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标【详解】(1)抛物线的解析式为y=a(x+4)(x1),即y=ax2+3ax4a,4a=2,解得a=,抛物线解析式为y=x2x+2;(2)ABC为直角三角形理由如下:当x=0时,y=x2x+2=2,则C(0,2),A(4,0),

19、B (1,0),AC2=42+22,BC2=12+22,AB2=52=25,AC2+BC2=AB2,ABC为直角三角形,ACB=90;(3)抛物线的对称轴为直线x=,连接AC交直线x=于P点,如图,PA=PB,PB+PC=PA+PC=AC,此时PB+PC的值最小,PBC周长最小,设直线AC的解析式为y=kx+m,把A(4,0),C(0,2)代入得,解得,直线AC的解析式为y=x+2,当x=时,y=x+2=,则P(,)当P点坐标为(,)时,PBC周长最小【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化解关于x的一元二次方程即

20、可求得交点横坐标也考查了待定系数法求二次函数解析式和最短路径问题19、(1)见解析;(2)PQmin=7,PQmax=13;(3) Smin=,Smax=18.【解析】(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,当E、P、Q三点共线时最PQ最小,当P点在位置时PQ最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.【详解】(1)当P为AD中点时,BCP为等腰三角形.(2)以E为圆心,以5为半径画圆 当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7. 当P点在位置时PQ最大,PQ的最大值是(3)以

21、E为圆心,以2为半径画圆.当点p为位置时,四边形PADC面积最大.当点p为位置时,四边形PADC最小=四边形+三角形=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.20、(1)150,(2)36,(3)1【解析】(1)根据图中信息列式计算即可;(2)求得“足球“的人数=15020%=30人,补全上面的条形统计图即可;(3)360乒乓球”所占的百分比即可得到结论;(4)根据题意计算即可【详解】(1)m=2114%=150,(2)“足球“的人数=15020%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360=36

22、;(4)120020%=1人,答:估计该校约有1名学生最喜爱足球活动故答案为150,36,1【点睛】本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键21、(1)(2)证明见解析;(3)1【解析】(1)由PD切O于点C,AD与过点C的切线垂直,易证得OCAD,继而证得AC平分DAB;(2)由条件可得CAO=PCB,结合条件可得PCF=PFC,即可证得PC=PF;(3)易证PACPCB,由相似三角形的性质可得到 ,又因为tanABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在RtPOC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程

23、求出k的值即可求出PC的长【详解】(1)证明:PD切O于点C,OCPD,又ADPD,OCAD,ACO=DACOC=OA,ACO=CAO,DAC=CAO,即AC平分DAB;(2)证明:ADPD,DAC+ACD=90又AB为O的直径,ACB=90PCB+ACD=90,DAC=PCB又DAC=CAO,CAO=PCBCE平分ACB,ACF=BCF,CAO+ACF=PCB+BCF,PFC=PCF,PC=PF;(3)解:PAC=PCB,P=P,PACPCB,又tanABC=,设PC=4k,PB=3k,则在RtPOC中,PO=3k+7,OC=7,PC2+OC2=OP2,(4k)2+72=(3k+7)2,k=

24、6 (k=0不合题意,舍去)PC=4k=46=1【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质22、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1

25、500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解23、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得

26、A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式; (2)设P(t,0),则可表示出PC的长,进一步表示出ACP的面积,可得到关于t的方程,则可求得P点坐标详解:(1)把A点坐标代入y=x+2,可得:3=m+2,解得:m=2,A(2,3)A点也在双曲线上,k=23=6,双曲线解析式为y=; (2)在y=x+2中,令y=0可求得:x=4,C(4,0)点P在x轴上,可设P点坐标为(t,0),CP=|t+4|,且A(2,3),SACP=3|t+4|ACP的面积为3,3|t+4|=3,解得:t=6或t=2,P点坐标为(6,0)或(2,0)点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键24、x=60【解析】设有x个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x个客人,则 解得:x=60;有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁