河北省唐山市友谊中学2023年中考一模数学试题含解析.doc

上传人:lil****205 文档编号:88305824 上传时间:2023-04-25 格式:DOC 页数:16 大小:598.50KB
返回 下载 相关 举报
河北省唐山市友谊中学2023年中考一模数学试题含解析.doc_第1页
第1页 / 共16页
河北省唐山市友谊中学2023年中考一模数学试题含解析.doc_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《河北省唐山市友谊中学2023年中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省唐山市友谊中学2023年中考一模数学试题含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列运算正确的()A(b2)3=b5Bx3x3=xC5

2、y33y2=15y5Da+a2=a32在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球两次都摸到黄球的概率是()A B CD 3在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD4在,这四个数中,比小的数有( )个ABCD5某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )ABCD6在0,-2,5,-0.3中,负数的个数是( )A1B2C3D47一

3、元二次方程x28x2=0,配方的结果是()A(x+4)2=18B(x+4)2=14C(x4)2=18D(x4)2=148一元二次方程3x2-6x+4=0根的情况是A有两个不相等的实数根B有两个相等的实数根C有两个实数根D没有实数根9关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B2C2D210如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD若AC=10cm,BAC=36,则图中阴影部分的面积为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚

4、冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则1+2+3+4+5= 度12已知二次函数yax2bxc(a0)中,函数值y与自变量x的部分对应值如下表:x54321y32565则关于x的一元二次方程ax2bxc2的根是_13如图,点A在反比例函数y=(x0)的图像上,过点A作ADy轴于点D,延长AD至点C,使CD=2AD,过点A作ABx轴于点B,连结BC交y轴于点E,若ABC的面积为6,则k的值为_.14如图,D、E分别是ABC的边AB、BC上的点,DEAC,若SBDE:SCDE=1:3,则BE:BC的值为_15如图,在直角坐标

5、系中,点A,B分别在x轴,y轴上,点A的坐标为(1,0),ABO=30,线段PQ的端点P从点O出发,沿OBA的边按OBAO运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为_16若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是_三、解答题(共8题,共72分)17(8分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD轴于点D,BE轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.18(8分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1)求从

6、中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式19(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公

7、司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?20(8分)如图,O是ABC的外接圆,BC为O的直径,点E为ABC的内心,连接AE并延长交O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE(1)求证:DB=DE;(2)求证:直线CF为O的切线;(3)若CF=4,求图中阴影部分的面积21(8分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,

8、现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?22(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x/(元/千克)506070销售量y/千克1008060 (1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润收入成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?23(12

9、分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得ADP=60,然后沿河岸走了110米到达C处,测得BCP=30,求这条河的宽(结果保留根号)24ABC中,AB=AC,D为BC的中点,以D为顶点作MDN=B如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与ADE相似的三角形如图(2),将MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论在图(2)中,若AB=AC=10,BC=12,

10、当DEF的面积等于ABC的面积的时,求线段EF的长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则详解:A、(b2)3=b6,故此选项错误;B、x3x3=1,故此选项错误;C、5y33y2=15y5,正确;D、a+a2,无法计算,故此选项错误故选C点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键2、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案注意

11、此题属于放回实验【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,两次都摸到黄球的概率为,故选A【点睛】此题考查的是用列表法或树状图法求概率的知识注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验3、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;

12、C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.4、B【解析】比较这些负数的绝对值,绝对值大的反而小.【详解】在4、1、这四个数中,比2小的数是是4和.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.5、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.6、B【解析】根据负数的定义判断即可【详解】解:根据负数的定义可知,这一

13、组数中,负数有两个,即-2和-0.1故选B7、C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1故选C【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法8、D【解析】根据=b2-4ac,求出的值,然后根据的值与一元二次方程根的关系判断即可.【详解】a=3,b=-6,c=4,=b2-4ac=(-6)2-434=-120时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根.9、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解

14、】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.10、B【解析】试题解析:AC=10,AO=BO=5,BAC=36,BOC=72,矩形的对角线把矩形分成了四个面积相等的三角形,阴影部分的面积=扇形AOD的面积+扇形

15、BOC的面积=2扇形BOC的面积=10 故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、360【解析】根据多边形的外角和等于360解答即可【详解】由多边形的外角和等于360可知,1+2+3+4+5=360,故答案为360【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360是解题的关键12、x1=-4,x1=2【解析】解:x=3,x=1的函数值都是5,相等,二次函数的对称轴为直线x=1x=4时,y=1,x=2时,y=1,方程ax1+bx+c=3的解是x1=4,x1=2故答案为x1=4,x1=2点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息

16、,求出对称轴解析式是解题的关键13、1【解析】连结BD,利用三角形面积公式得到SADB=SABC=2,则S矩形OBAD=2SADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值【详解】连结BD,如图,DC=2AD,SADB=SBDC=SBAC=6=2,ADy轴于点D,ABx轴,四边形OBAD为矩形,S矩形OBAD=2SADB=22=1,k=1故答案为:1【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|14、1:4【解析】由SBDE:SCDE=1:3,得到,于是得到【详解】解:

17、两个三角形同高,底边之比等于面积比. 故答案为【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键15、4【解析】首先根据题意正确画出从OBA运动一周的图形,分四种情况进行计算:点P从OB时,路程是线段PQ的长;当点P从BC时,点Q从O运动到Q,计算OQ的长就是运动的路程;点P从CA时,点Q由Q向左运动,路程为QQ;点P从AO时,点Q运动的路程就是点P运动的路程;最后相加即可【详解】在RtAOB中,ABO=30,AO=1,AB=2,BO=当点P从OB时,如图1、图2所示,点Q运动的路程为,当点P从BC时,如图3所示,这时QCAB,则ACQ=9

18、0ABO=30BAO=60OQD=9060=30AQ=2AC,又CQ=,AQ=2OQ=21=1,则点Q运动的路程为QO=1,当点P从CA时,如图3所示,点Q运动的路程为QQ=2,当点P从AO时,点Q运动的路程为AO=1,点Q运动的总路程为:+1+2+1=4故答案为4.考点:解直角三角形16、8【解析】解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.三、解答题(共8题,共72分)17、(1)点B的坐标是(-5,-4);直线AB的解析式为:(2)四边形CBED是菱形.理由见解析【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即

19、利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BEx轴”及两点间的距离公式求得,CD=5,BE=5,且BECD,从而可以证明四边形CBED是平行四边形;然后在RtOED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形【详解】解:(1)双曲线过A(3,),.把B(-5,)代入,得. 点B的坐标是(-5,-4)设直线AB的解析式为,将 A(3,)、B(-5,-4)代入得, 解得:.直线AB的解析式为:(2)四边形CBED是菱形.理由如下: 点D的

20、坐标是(3,0),点C的坐标是(-2,0). BE轴, 点E的坐标是(0,-4).而CD =5, BE=5,且BECD.四边形CBED是平行四边形在RtOED中,ED2OE2OD2, ED5,EDCD.CBED是菱形18、(1).(2).【解析】试题分析:(1)根据取出黑球的概率=黑球的数量球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:考点:概率19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【

21、解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元(2)设购买A型公交车a辆,则B型公交车(10a)辆,由题意

22、得,解得:,因为a是整数,所以a6,7,8;则(10a)4,3,2;三种方案:购买A型公交车6辆,则B型公交车4辆:1006+15041200万元;购买A型公交车7辆,则B型公交车3辆:1007+15031150万元;购买A型公交车8辆,则B型公交车2辆:1008+15021100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题20、(1)证明见解析;(2)证明见解析;(3)【解析】(1)欲证明DB=DE.,只要证明DBE=DEB;(2)欲证明C

23、F是O的切线.,只要证明BCCF即可;(3)根据S阴影部分S扇形SOBD计算即可【详解】解:(1)E是ABC的内心,BAE=CAE,EBA=EBC,BED=BAE+EBA,DBE=EBC+DBC,DBC=EAC,DBE=DEB,DB=DE(2)连接CDDA平分BAC,DAB=DAC,BD=CD,又BD=DF,CD=DB=DF,BCCF,CF是O的切线(3)连接OD O、D是BC、BF的中点,CF4, OD2. CF是O的切线,BOD为等腰直角三角形 S阴影部分S扇形SOBD 【点睛】本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点21、(1)甲、乙

24、两队合作完成这项工程需要36天;(2)甲、乙两队至多要合作7天【解析】(1)设甲、乙两队合作完成这项工程需要x天,根据条件:甲队先做5天,再由甲、乙合作9天,共完成总工作量的,列方程求解即可;(2)设甲、乙两队最多合作元天,先求出甲、乙两队合作一天完成工程的多少,再根据完成此项工程的工程款不超过190万元,列出不等式,求解即可得出答案【详解】(1)设甲、乙两队合作完成这项工程需要x天根据题意得,解得 x=36,经检验x=36是分式方程的解,答:甲、乙两队合作完成这项工程需要36天,(2)设甲、乙需要合作y天,根据题意得,解得y7答:甲、乙两队至多要合作7天【点睛】本题考查了分式方程的应用和一元

25、一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验22、 (1)y2x200 (2)W2x2280x8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元【解析】(1)用待定系数法求一次函数的表达式;(2)利用利润的定义,求与之间的函数表达式;(3)利用二次函数的性质求极值.【详解】解:(1)设,由题意,得,解得,所求函数表达式为.(2).(3),其中,当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.考点: 二次函数的实际应用.23、米.【解析】试题分析:根据矩形的性质,得到对

26、边相等,设这条河宽为x米,则根据特殊角的三角函数值,可以表示出ED和BF,根据EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.试题解析:作AEPQ于E,CFMN于F.PQMN,四边形AECF为矩形,EC=AF,AE=CF.设这条河宽为x米,AE=CF=x.在RtAED中, PQMN, 在RtBCF中, EC=ED+CD,AF=AB+BF, 解得 这条河的宽为米.24、(1)ABD,ACD,DCE(2)BDFCEDDEF,证明见解析;(3)4.【解析】(1)根据等腰三角形的性质以及相似三角形的判定得出ADEABDACDDCE,同理可得:ADEACDADEDCE(2)利用已知首先求出B

27、FD=CDE,即可得出BDFCED,再利用相似三角形的性质得出,从而得出BDFCEDDEF(3)利用DEF的面积等于ABC的面积的,求出DH的长,从而利用SDEF的值求出EF即可【详解】解:(1)图(1)中与ADE相似的有ABD,ACD,DCE(2)BDFCEDDEF,证明如下:B+BDF+BFD=30,EDF+BDF+CDE=30,又EDF=B,BFD=CDEAB=AC,B=CBDFCEDBD=CD,即又C=EDF,CEDDEFBDFCEDDEF (3)连接AD,过D点作DGEF,DHBF,垂足分别为G,HAB=AC,D是BC的中点,ADBC,BD=BC=1在RtABD中,AD2=AB2BD2,即AD2=1023,AD=2SABC=BCAD=32=42,SDEF=SABC=42=3又ADBD=ABDH,BDFDEF,DFB=EFD DHBF,DGEF,DHF=DGF又DF=DF,DHFDGF(AAS)DH=DG=SDEF=EFDG=EF=3,EF=4【点睛】本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁