《江苏省苏州昆山市石牌中学2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州昆山市石牌中学2023年中考数学押题试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,四边形ABCD内接于O,AB为O的直径,点C为弧BD的中点,若DAB=50,则ABC的大小是()A55B60C65D702如图,BD是ABC的角平分线,DCAB,下列说法正确的是()ABC=CDBADBCCAD=BCD点A与点C关于BD对称3
2、已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D44 (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A2BC5D5若2mn6,则代数式m-n+1的值为()A1B2C3D46如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DEAC,EFAB,FDBC,则DEF的面积与ABC的面积之比等于( )A13B23C2D37现有三张背面完全相同的卡片,正面分别标有数字1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正数的概率是()ABCD8如图,按照三视图确定该几何体的侧面积是(
3、单位:cm)( )A24 cm2B48 cm2C60 cm2D80 cm29下列各式计算正确的是( )ABCD10下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x5二、填空题(本大题共6个小题,每小题3分,共18分)11A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地若设乙车的速度是x千米/小时,则根据题意,可列方程_12抛物线yx22x+m与x轴只有一个交点,则m的值为_13在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标
4、为_14如图,ABC内接于O,CAB=30,CBA=45,CDAB于点D,若O的半径为2,则CD的长为_15圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_cm116A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_千米三、解答题(共8题,共72分)17(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态
5、环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92 91初二:74 97 96 89 98 74 69 76 72 78 99 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,8090分为良好,6080分为合格,60分以下为不合格)分析数据:年级
6、平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).18(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)19(8分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频
7、数统计表和频数分布直方图 成绩分组组中值频数25x3027.5430x3532.5m35x4037.52440x45a3645x5047.5n50x5552.54(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?20(8分)如图,已知点E,F分别是ABCD的边BC,AD上的中点,且BAC=90(1)求证:四边形AECF是菱形;(2)若B=30,BC=10,求菱形AECF面积21(8分)甲班有45人,乙班有39人现在需要从甲、乙班各抽调一些同学去参加歌咏比赛如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰
8、好是乙班剩余人数的2倍请问从甲、乙两班各抽调了多少参加歌咏比赛?22(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30,向前走60米到达D处,在D处测得点A的仰角为45,求建筑物AB的高度23(12分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45、35已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度(结果保留整数)(参考数据:sin35=0.57,cos35=0.82,tan35=0.70)24如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应数分别为a、b、c、d、e(1)若a+e=0,则代数
9、式b+c+d=;(2)若a是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M表示的实数为m(m与a、b、c、d、e不同),且满足MA+MD=3,则m的范围是参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】连接OC,因为点C为弧BD的中点,所以BOC=DAB=50,因为OC=OB,所以ABC=OCB=65,故选C2、A【解析】由BD是ABC的角平分线,根据角平分线定义得到一对角ABD与CBD相等,然后由DCAB,根据两直线平行,得到一对内错角ABD与CDB相等,利用等量代换得到DBC=CDB,再根据等角对等边得到BC=CD,从而得到正确的选项【详解】B
10、D是ABC的角平分线,ABD=CBD,又DCAB,ABD=CDB,CBD=CDB,BC=CD故选A【点睛】此题考查了等腰三角形的判定,以及平行线的性质学生在做题时,若遇到两直线平行,往往要想到用两直线平行得同位角或内错角相等,借助转化的数学思想解决问题这是一道较易的证明题,锻炼了学生的逻辑思维能力3、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对
11、应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2
12、=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键4、B【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=. 故选B【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用
13、累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力5、D【解析】先对m-n+1变形得到(2mn)+1,再将2mn6整体代入进行计算,即可得到答案.【详解】mn+1(2mn)+1当2mn6时,原式6+13+14,故选:D【点睛】本题考查代数式,解题的关键是掌握整体代入法.6、A【解析】DEAC,EFAB,FDBC,C+EDC=90,FDE+EDC=90,C=FDE,同理可得:B=DFE,A=DEF,DEFCAB,DEF与ABC的面积之比= ,又ABC为正三角形,B=C=A=60EFD是等边三角形,EF=DE=DF,又DEAC,EFAB,FDBC,AEFCDEBFD,BF=AE=C
14、D,AF=BD=EC,在RtDEC中,DE=DCsinC=DC,EC=cosCDC=DC,又DC+BD=BC=AC=DC,DEF与ABC的面积之比等于:故选A点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比7、D【解析】先找出全部两张卡片正面数字之和情况的总数,再先找出全部两张卡片正面数字之和为正数情况的总数,两者的比值即为所求概率.【详解】任取两张卡片,数字之和一共有3、2、1三种情况,其中和为正
15、数的有2、1两种情况,所以这两张卡片正面数字之和为正数的概率是.故选D.【点睛】本题主要考查概率的求法,熟练掌握概率的求法是解题的关键.8、A【解析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其侧面积【详解】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为81=4cm,故侧面积=rl=64=14cm1故选:A【点睛】此题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查9、B【解析】A选项中,不是同类二次根式,不能合并,本选
16、项错误;B选项中,本选项正确;C选项中,而不是等于,本选项错误;D选项中,本选项错误;故选B.10、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】直接利用甲车比乙车早半小时到达目的地得出等式即可【详解】解:设乙车的速度是x千
17、米/小时,则根据题意,可列方程:故答案为:【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键12、1【解析】由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值【详解】解:抛物线y=x22x+m与x轴只有一个交点,=2,b24ac=2241m=2;m=1故答案为1【点睛】本题考查了抛物线与x轴的交点问题,注:抛物线与x轴有两个交点,则2;抛物线与x轴无交点,则2;抛物线与x轴有一个交点,则=213、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解
18、】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解14、【解析】连接OA,OC,根据COA=2CBA=90可求出AC=,然后在RtACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,COA=2CBA=90,在RtAOC中,AC=,CDAB,在RtACD中,CD=ACsinCAD=,故答案为.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.15、10【解析】解:根据圆锥的侧面积公式可得这个圆锥的侧面积=145=10(cm1)故答案为:10【点睛】本题考查圆锥的
19、计算16、【解析】根据题意和函数图象可以分别求得甲乙的速度,从而可以得到当甲第二次与乙相遇时,乙离B地的距离【详解】设甲的速度为akm/h,乙的速度为bkm/h, ,解得,设第二次甲追上乙的时间为m小时,100m25(m1)=600,解得,m=,当甲第二次与乙相遇时,乙离B地的距离为:25(-1)=千米,故答案为【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答三、解答题(共8题,共72分)17、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好【解析】(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、
20、众数、中位数的统计意义回答【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10x19的有:11 19 19 11 19 19 17 11,共1个故答案为:1分析数据:在76 11 93 65 71 94 19 61 95 50 19 11 19 19 2 94 17 11 92 91中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:69 72 72 73 74 74 74 74 76 76 71 19 96 97 97 91 91 99 99 99,第10个数为76,第11个数为71,故中位数为:(76+71)2=2故答案为:19,2(2)初一年级掌握生态环保知识
21、水平较好因为两个年级的平均数相差不大,但是初一年级同学的中位数是115,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好【点睛】本题考查了频数(率)分布表,众数、中位数以及平均数掌握众数、中位数以及平均数的定义是解题的关键18、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得
22、四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算19、(1)详见解析(2)2400【解析】(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值
23、.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.532.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=10041224364=1补全频数分布直方图如下:(2)优秀的人数所占的比例是:=0.6,该县中考体育成绩优秀学生人数约为:40000.6=2400(人)20、(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积试题解析:(1)证明:四边形
24、ABCD是平行四边形,ADBC,AD=BC在RtABC中,BAC=90,点E是BC边的中点,AE=CE=BC同理,AF=CF=ADAF=CE四边形AECF是平行四边形平行四边形AECF是菱形(2)解:在RtABC中,BAC=90,B=30,BC=10,AC=5,AB=连接EF交于点O,ACEF于点O,点O是AC中点OE=EF=菱形AECF的面积是ACEF=考点:1菱形的性质和面积;2平行四边形的性质;3解直角三角形21、从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x人,那么从乙班抽调了(x1)人,根据题意列出一元一次方程,从而得出答案详解:设从甲班抽调了x人,那么从乙班
25、抽调了(x1)人, 由题意得,45x=239(x1), 解得:x=35, 则x1=351=1 答:从甲班抽调了35人,从乙班抽调了1人 点睛:本题主要考查的是一元一次方程的应用,属于基础题型理解题目的含义,找出等量关系是解题的关键22、(30+30)米【解析】解:设建筑物AB的高度为x米在RtABD 中,ADB=45AB=DB=xBC=DB+CD= x+60在RtABC 中,ACB=30,tanACB= x=30+30 建筑物AB的高度为(30+30)米23、热气球离地面的高度约为1米【解析】作ADBC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可【详解】解:作
26、ADBC交CB的延长线于D,设AD为x,由题意得,ABD=45,ACD=35,在RtADB中,ABD=45,DB=x,在RtADC中,ACD=35,tanACD= , = ,解得,x1答:热气球离地面的高度约为1米【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形24、 (1)0;(1) ,;(3) 1x1.【解析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论【详解】解:(1)a+e=0,即a、e互为相反数,点C表示原点,b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)a是最小的正整数,a=1,则原式=+=,当a=1时,原式=;(3)A、B、C、D、E为连续整数,b=a+1,c=a+1,d=a+3,e=a+4,a+b+c+d=1,a+a+1+a+1+a+3=1,4a=4,a=1,MA+MD=3,点M再A、D两点之间,1x1,故答案为:1x1【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.