《河北省唐山市路南区2023届中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省唐山市路南区2023届中考二模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,将ABC绕点C(0,-1)旋转180得到ABC,设点A的坐标为(a,b),则点A的坐标为( )A(-a,-b)B(-a,-b-1)C(-a,-b+1)D(-a,-b-2)2如图,已知ABC中,A=75,则1+2=( )A335B255C155D1503世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A7.6109B7.6108C7.6109D7.61084如图所示,正方形ABCD的面积为12,ABE是等边三角
3、形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A2B2C3D5将一块直角三角板ABC按如图方式放置,其中ABC30,A、B两点分别落在直线m、n上,120,添加下列哪一个条件可使直线mn( )A220B230C245D2506关于的方程有实数根,则满足( )AB且C且D7若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m8平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD9若x2 是关于x的一元二次方程x2axa20的一个根,则a的值为( )A1或4B1或4C1或4D1或410如图,
4、将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A甲B乙C丙D丁二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,ABAC10cm,F为AB上一点,AF2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0t5),连D交CF于点G若CG2FG,则t的值为_12如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_13如图,将直线yx向下平移b个单位长度后得到直线l,l与反比例函数y(x0)的图象相交于点A,与
5、x轴相交于点B,则OA2OB2的值为_14如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:E为AB的中点;FC=4DF;SECF=;当CEBD时,DFN是等腰三角形其中一定正确的是_15如图,在等边ABC中,AB=4,D是BC的中点,将ABD绕点A旋转后得到ACE,连接DE交AC于点F,则AEF的面积为_16在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=_17李明早上骑自行车上学,中途因道路施工推车步行了一段路,到学校共用时15分钟如果他骑自行车的平均速度是每分钟
6、250米,推车步行的平均速度是每分钟80米,他家离学校的路程是2900米,设他推车步行的时间为x分钟,那么可列出的方程是_.三、解答题(共7小题,满分69分)18(10分)解不等式组: .19(5分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90;当BC=3,sinA=时,求AF的长20(8分)如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点
7、F为AB的中点,连结FN、FM,求证:MFNBDC21(10分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费(I)根据题意,填写下表:月用水量(吨/户)41016应收水费(元/户) 40 (II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?22(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kg
8、A级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值23(12分)先化简,再求值:,其中与2,3构成的三边,且为整数.24(14分)如图,在1010的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”设对称轴平行于y轴
9、的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xAxCxB,那么符合上述条件的抛物线条数是()A7B8C14D16参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】设点A的坐标是(x,y),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可【详解】根据题意,点A、A关于点C对称,设点A的坐标是(x,y),则=0,=-1,解得x=-a,y=-b-2,点A的坐标是(-a,-b-2)故选D【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点
10、A、A关于点C成中心对称是解题的关键2、B【解析】A+B+C=180,A=75,B+C=180A=1051+2+B+C=360,1+2=360105=255故选B点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n2)180(n3且n为整数)是解题的关键3、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a,其中,n为由原数左边起第一个不为
11、0的数字前面的0的个数所决定.4、A【解析】连接BD,交AC于O,正方形ABCD,OD=OB,ACBD,D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),此时PD+PE最小,此时PD+PE=BE,正方形的面积是12,等边三角形ABE,BE=AB=,即最小值是2,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置5、D【解析】根据平行线的性质即可得到2=ABC+1,即可得出结论【详解】直线EFGH,2=ABC+1=30+20=50,故选
12、D【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键6、A【解析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a5时,根据判别式的意义得到a1且a5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围【详解】当a=5时,原方程变形为-4x-1=0,解得x=-;当a5时,=(-4)2-4(a-5)(-1)0,解得a1,即a1且a5时,方程有两个实数根,所以a的取值范围为a1故选A【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查
13、了一元二次方程的定义7、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B8、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征9、B【解析】试题分析:把x=2代入关于x的一元二次方程x2ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B考点:一元二次方程的解;一元二次方程的解法10、D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围
14、成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁故选D二、填空题(共7小题,每小题3分,满分21分)11、1【解析】过点C作CHAB交DE的延长线于点H,则,证明,可求出CH,再证明,由比例线段可求出t的值【详解】如下图,过点C作CHAB交DE的延长线于点H,则,DFCH,同理,解得t1,t(舍去),故答案为:1【点睛】本题主要考查了三角形中的动点问题,熟练掌握三角形相似的相关方法是解决本题的关键.12、 【解析】试题解析:共6个数,小于5的有4个,P(小于5)=故答案为13、1【解析】解:平移后解析式是y=xb,代入y=得:xb=,即x2bx=5,y=xb与x轴交点B的坐标是(b,0),设
15、A的坐标是(x,y),OA2OB2=x2+y2b2=x2+(xb)2b2=2x22xb=2(x2xb)=25=1,故答案为1点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.14、【解析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,ABCD,推出BEMCDM,根据相似三角形的性质得到,于是得到BE=AB,故正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故错误;根据已知条件得到
16、SBEM=SEMN=SCBE,求得=,于是得到SECF=,故正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到ENB=EBN,等量代换得到CDN=DNF,求得DFN是等腰三角形,故正确【详解】解:M、N是BD的三等分点,DN=NM=BM,四边形ABCD是平行四边形,AB=CD,ABCD,BEMCDM,BE=CD,BE=AB,故正确;ABCD,DFNBEN,=,DF=BE,DF=AB=CD,CF=3DF,故错误;BM=MN,CM=2EM,BEM=SEMN=SCBE,BE=CD,CF=CD,=,SEFC=SCBE=SMNE,SECF=,故正确;BM=NM,EMBD,EB=EN,
17、ENB=EBN,CDAB,ABN=CDB,DNF=BNE,CDN=DNF,DFN是等腰三角形,故正确;故答案为【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质15、【解析】首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到AEF的面积.【详解】解:在等边ABC中,B=60,AB=4,D是BC的中点,ADBC,BAD=CAD=30,AD=ABcos30=4=2,根据旋转的性质知,EAC=DAB=30,AD=AE,DAE=EAC+CAD=60,ADE的等边三角形,DE=AD=2
18、,AEF=60,EAC=CADEF=DF=,AFDEAF=EFtan60=3,SAEF=EFAF=3=.故答案为:.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出ADE是等边三角形是解题的关键16、5:1【解析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题【详解】解:作AEBC交DC于点E,交DF于点F,设每个小正方形的边长为a,则DEFDCN,EF=a,AF=2a,AE=a,AMEBMC,故答案为:5:1【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答17、【解析】分析:根据题意把李明步行和骑
19、车各自所走路程表达出来,再结合步行和骑车所走总里程为2900米,列出方程即可.详解:设他推车步行的时间为x分钟,根据题意可得:80x+250(15-x)=2900.故答案为80x+250(15-x)=2900.点睛:弄清本题中的等量关系:李明推车步行的路程+李明骑车行驶的路程=2900是解题的关键.三、解答题(共7小题,满分69分)18、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.19、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OE
20、BC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90(2)在ABC,C=90,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识20、(1)证明见解析;(2);(3)证明见解析. 【解析】分析:(1)由AB=AC知ABC=ACB,由
21、等腰三角形三线合一知AMBC,从而根据MAB+ABC=EBC+ACB知MAB=EBC,再由MBN为等腰直角三角形知EBC+NBE=MAB+ABN=MNB=45可得证;(2)设BM=CM=MN=a,知DN=BC=2a,证ABNDBN得AN=DN=2a,RtABM中利用勾股定理可得a的值,从而得出答案;(3)F是AB的中点知MF=AF=BF及FMN=MAB=CBD,再由即可得证详解:(1)AB=AC,ABC=ACB,M为BC的中点,AMBC,在RtABM中,MAB+ABC=90,在RtCBE中,EBC+ACB=90,MAB=EBC,又MB=MN,MBN为等腰直角三角形,MNB=MBN=45,EBC
22、+NBE=45,MAB+ABN=MNB=45,NBE=ABN,即BN平分ABE;(2)设BM=CM=MN=a,四边形DNBC是平行四边形,DN=BC=2a,在ABN和DBN中,ABNDBN(SAS),AN=DN=2a,在RtABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=(负值舍去),BC=2a=;(3)F是AB的中点,在RtMAB中,MF=AF=BF,MAB=FMN,又MAB=CBD,FMN=CBD,MFNBDC点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点21、
23、()16;66;()当x15时,y=4x;当x15时,y=6x30;()居民甲上月用水量为18吨,居民乙用水12吨【解析】()根据题意计算即可;()根据分段函数解答即可;()根据题意,可以分段利用方程或方程组解决用水量问题【详解】解:()当月用水量为4吨时,应收水费=44=16元;当月用水量为16吨时,应收水费=154+16=66元;故答案为16;66;()当x15时,y=4x;当x15时,y=154+(x15)6=6x30;()设居民甲上月用水量为X吨,居民乙用水(X6)吨由题意:X615且X15时,4(X6)+154+(X15)6=126X=18,居民甲上月用水量为18吨,居民乙用水12吨
24、【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意在实际问题中,利用方程或方程组是解决问题的常用方法22、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg销售总利润为w元构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为
25、100元和150元(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200a)kg销售总利润为w元由题意w=100a+150(200a)=50a+30000,500,w随x的增大而减小,当a取最小值,w有最大值,200a2a,a,当a=67时,w最小=5067+30000=26650(元),此时20067=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题23、1【解析】试题分析:先进行分式的除法运算,再进行分式的加减法运
26、算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.试题解析:原式= ,a与2、3构成ABC的三边,32a3+2,即1a5,又a为整数,a=2或3或4,当x=2或3时,原分式无意义,应舍去,当a=4时,原式=124、C【解析】根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解【详解】解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1故选C【点睛】本题是二次函数综合题主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观