江苏省宿迁市2022-2023学年中考数学全真模拟试题含解析.doc

上传人:茅**** 文档编号:88305599 上传时间:2023-04-25 格式:DOC 页数:19 大小:818KB
返回 下载 相关 举报
江苏省宿迁市2022-2023学年中考数学全真模拟试题含解析.doc_第1页
第1页 / 共19页
江苏省宿迁市2022-2023学年中考数学全真模拟试题含解析.doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《江苏省宿迁市2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市2022-2023学年中考数学全真模拟试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某市公园的东、西、南、北方向上各有一个入

2、口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( )ABCD2在RtABC中,C=90,如果AC=2,cosA=,那么AB的长是()A3BCD3抛物线y=ax24ax+4a1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x12x2,x1+x24,则下列判断正确的是()AmnBmnCmnDmn4对于不等式组,下列说法正确的是()A此不等式组的正整数解为1,2,3B此不等式组的解集为C此不等式组有5个整数解D此不等式组无解5在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D

3、12人6在方格纸中,选择标有序号中的一个小正方形涂黑,与图中阴影部分构成中心对称图形该小正方形的序号是( )ABCD7的相反数是AB2CD8如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30BOABC,OBACCAB与OC互相垂直DAB与OC互相平分9下列各图中,1与2互为邻补角的是( )ABCD10从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A标号是2B标号小于6C标号为6D标号为偶数二、填空题(共7小题,每小题3分,满分21分)11已知(x、y、z0),那么的值为_

4、12如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_13如图,以锐角ABC的边AB为直径作O,分别交AC,BC于E、D两点,若AC14,CD4,7sinC3tanB,则BD_14如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=的图象上,则菱形的面积为_15如图,在PAB中,PAPB,M、N、K分别是PA,PB,AB上的点,且AMBK,BNAK若MKN40,则P的度数为_16如图,利用图形面积的不同表示方法,能够得到的代数恒等式是_(写出一个即可)17

5、如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC上,将纸片沿AE折叠,使点B落在点F处,联结FC,当EFC是直角三角形时,那么BE的长为_三、解答题(共7小题,满分69分)18(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示(1)a= ,b= ;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节

6、)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?19(5分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值20(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A

7、(1,a),B(3,b)两点求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求PAB的面积21(10分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件降价前商场每月销售该商品的利润是多少元?要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?22(10分)如图,已知点A,B,C在半径为4的O上,过点C作O的切线交OA的延长线于点D()若ABC=29,求D的大小;()若D=30,

8、BAO=15,作CEAB于点E,求:BE的长;四边形ABCD的面积23(12分)如图1,ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长24(14分)如图,O的直径AD长为6,AB是弦,CDAB,A=30,且CD=(1)求C的度数;(2)求证:BC是O的切线参考答案一、选

9、择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为,故选B【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件注意概率=所求情况数与总情况数之比2、A【解析】根据锐

10、角三角函数的性质,可知cosA=,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.3、C【解析】分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.详解: 此抛物线对称轴为 抛物线与x轴交于两点,当时,得 故选C点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,4、A【解析】解:,解得x,解得x1,所以不等式组的解集为1x,所以不等式组的整数解为1,2,1故选A点睛:

11、本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解)解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解5、C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.6、B【解析】根据中心对称图形的概念,中心对称

12、图形是图形沿对称中心旋转180度后与原图重合。因此,通过观察发现,当涂黑时,所形成的图形关于点A中心对称。故选B。7、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8、C【解析】(1)DAC=DBC=30,AOC=BOC=60,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OA

13、CB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.9、D【解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是故选D10、C【解析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C【点睛】本题考查了随机事件以及必然事件和不可能事件

14、的定义,正确把握相关定义是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】解:由(x、y、z0),解得:x=3z,y=2z,原式=1故答案为1点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解12、【解析】如图,有5种不同取法;故概率为 .13、1【解析】如图,连接AD,根据圆周角定理可得ADBC在RtADC中,sinC= ;在RtABD中,tanB=已知7sinC=3tanB,所以7=3,又因AC14,即可求得BD=1 点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到

15、tanB和sinC的式子是解决问题的关键14、1【解析】连接AC交OB于D,由菱形的性质可知根据反比例函数中k的几何意义,得出AOD的面积=1,从而求出菱形OABC的面积=AOD的面积的4倍【详解】连接AC交OB于D四边形OABC是菱形,点A在反比例函数的图象上,的面积,菱形OABC的面积=的面积=1【点睛】本题考查的知识点是菱形的性质及反比例函数的比例系数k的几何意义解题关键是反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即15、100【解析】由条件可证明AMKBKN,再结合外角的性质可求得AMKN,再利用三角形内角和可求得P【详解】解:PAPB

16、,AB,在AMK和BKN中,AMKBKN(SAS),AMKBKN,A+AMKMKN+BKN,AMKN40,P180AB1804040100,故答案为100【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得AMKBKN是解题的关键16、(a+b)2=a2+2ab+b2【解析】完全平方公式的几何背景,即乘法公式的几何验证此类题型可从整体和部分两个方面分析问题本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:, 【点睛】此题考查

17、了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.17、1.5或3【解析】根据矩形的性质,利用勾股定理求得AC=5,由题意,可分EFC是直角三角形的两种情况:如图1,当EFC=90时,由AFE=B=90,EFC=90,可知点F在对角线AC上,且AE是BAC的平分线,所以可得BE=EF,然后再根据相似三角形的判定与性质,可知ABCEFC,即,代入数据可得,解得BE=1.5; 如图2,当FEC=90,可知四边形ABEF是正方形,从而求出BE=AB=3.故答案为1.5或3.点睛:此题主要考查了翻折变换的性质,勾股定理,矩形的性质,正方形的判定与性质,利用勾股定理列方程

18、求解是常用的方法,本题难点在于分类讨论,做出图形更形象直观.三、解答题(共7小题,满分69分)18、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0x10与x10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0x10与x10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,a=;由y2图像上点

19、(10,480)和(20,1440),得到20人中后10人的费用为640元,b=;(2)0x10时,设y2=k2x,把(10, 800)代入得10k2=800,解得k2=80,y2=80x,x10,设y2=kx+b,把(10, 800)和(20,1440)代入得解得y2=64x+160(3)设B团有n人,则A团的人数为(50-n)当0n10时80n+48(50-n)=3040,解得n=20(不符合题意舍去)当n10时,解得n=30.则50-n=20人,则A团有20人,B团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.19、(1)2;(2)不同意他的

20、看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=x22x+3与抛物线的“亲近距离”,所以,然

21、后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,

22、t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键20、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)SPAB= 1.1 【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标

23、,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4,解得a=3,A(1,3),点A(1,3)代入反比例函数y=,得k=3,反比例函数的表达式y=,(2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,D(3,1),设直线AD的解析式为y=mx+n,把A,D两点代入得,解得m=2,n=1,直线AD的解析式为y=2x+1, 令y=0,得x=,点P坐标(,0),(3)SPAB=SAB

24、DSPBD=222=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.21、 (1) 4800元;(2) 降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润商品的销售数量=总利润”列出方程,解方程即可解决问题试题解析:(1)由题意得60(360280)4800(元).即降价前商场每月销售该商品的利润是4800元;

25、(2)设每件商品应降价x元,由题意得(360x280)(5x60)7200,解得x18,x260.要更有利于减少库存,则x60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键22、(1)D=32;(2)BE;【解析】()连接OC, CD为切线,根据切线的性质可得OCD=90,根据圆周角定理可得AOC=2ABC=292=58,根据直角三角形的性质可得D的大小.()根据D=30,得到DOC=60,根据BAO=15,可以得出AOB=150,进而证明OBC为等腰直

26、角三角形,根据等腰直角三角形的性质得出根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;根据四边形ABCD的面积=SOBC+SOCDSOAB进行计算即可.【详解】()连接OC,CD为切线,OCCD,OCD=90,AOC=2ABC=292=58,D=9058=32;()连接OB,在RtOCD中,D=30,DOC=60, BAO=15,OBA=15,AOB=150,OBC=15060=90,OBC为等腰直角三角形, 在RtCBE中, 作BHOA于H,如图,BOH=180AOB=30, 四边形ABCD的面积=SOBC+SOCDSOAB 【点睛】考查切线的性质,圆周角定理,等腰直角三角形的

27、判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中23、(1)见解析;(2)见解析;.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明ABDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=PN,

28、PMN是等腰三角形;(2)如图2,DAE=BAC,BAD=CAE,AB=AC,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接AM,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD=CE

29、=CM+EM=【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC24、(1)60;(2)见解析【解析】(1)连接BD,由AD为圆的直径,得到ABD为直角,再利用30度角所对的直角边等于斜边的一半求出BD的长,根据CD与AB平行,得到一对内错角相等,确定出CDB为直角,在直角三角形BCD中,利用锐角三角函数定义求出tanC的值,即可确定出C的度数;(2)连接OB,由OA=OB,利用等边对等角得到一对角相等,再由CD与AB平行,得到一对同旁内角互补,求出ABC度数,由ABCABO度数确定出OBC度数为90,即可得证;【详解】(1)如图,连接BD,AD为圆O的直径,ABD=90,BD=AD=3,CDAB,ABD=90,CDB=ABD=90,在RtCDB中,tanC=,C=60;(2)连接OB,A=30,OA=OB,OBA=A=30,CDAB,C=60,ABC=180C=120,OBC=ABCABO=12030=90,OBBC,BC为圆O的切线【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁