江西省莲花县重点中学2023年中考数学模试卷含解析.doc

上传人:lil****205 文档编号:88305574 上传时间:2023-04-25 格式:DOC 页数:22 大小:841.50KB
返回 下载 相关 举报
江西省莲花县重点中学2023年中考数学模试卷含解析.doc_第1页
第1页 / 共22页
江西省莲花县重点中学2023年中考数学模试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《江西省莲花县重点中学2023年中考数学模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省莲花县重点中学2023年中考数学模试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录用科学记数法表示88000为()A0.88105 B8.8104 C8.8105 D8.81062吉林市面积约为2

2、7100平方公里,将27100这个数用科学记数法表示为()A27.1102 B2.71103 C2.71104 D0.2711053甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:甲步行的速度为60米/分;乙走完全程用了32分钟;乙用16分钟追上甲;乙到达终点时,甲离终点还有300米其中正确的结论有()A1个B2个C3个D4个4民族图案是数学文化中的一块瑰宝下列图案中,既不是中心对称图形也不是轴对称图形的是( )ABCD5如图,BDAC,B

3、E平分ABD,交AC于点E,若A=40,则1的度数为()A80B70C60D406点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )A1 B-6 C2或-6 D不同于以上答案7北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72106平方米B7.2106平方米C72104平方米D7.2105平方米8若等式(-5)5=1成立,则内的运算符号为( )A+BCD9若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD10某中学篮球队12名队员的年龄如下表:年龄:(岁)

4、13141516人数1542关于这12名队员的年龄,下列说法错误的是( )A众数是14岁B极差是3岁C中位数是14.5岁D平均数是14.8岁二、填空题(共7小题,每小题3分,满分21分)11如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为1,4,ABC是直角三角形,ACB=90,则此抛物线顶点的坐标为_12为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_13如果一个正多边形的中心角为72,那么这个正

5、多边形的边数是 14如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_15如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_16某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_元.17PA、PB分别切O于点A、B,PAB=60,点C在O上,则ACB的度数为_三、解答题(共7小题,满分69分)18(10分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),

6、与y轴交于点B求抛物线的解析式;判断ABC的形状,并说明理由;经过点A的直线交抛物线于点P,交x轴于点Q,若SOPA=2SOQA,试求出点P的坐标19(5分)已知:如图,在半径为2的扇形中,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长20(8分)在平面直角坐标系xOy中,二次函数yax2+bx+c(a0)的图象经过A(0,4),B(2,0),C(-2,0)三点(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿

7、射线DA方向平移,使图象再次经过点B求平移后图象顶点E的坐标;直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积21(10分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的点和东人工岛上的点间的距离约为5.6千米,点是与西人工岛相连的大桥上的一点,在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达点时观测两个人工岛,分别测得,与观光船航向的夹角,求此时观光船到大桥段的距离的长(参考数据:,).22(10分)为了保障市民安全用

8、水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成这项工程的规定时间是多少天?23(12分)如图,抛物线y=+bx+c交x轴于点A(2,0)和点B,交y轴于点C(0,3),点D是x轴上一动点,连接CD,将线段CD绕点D旋转得到DE,过点E作直线lx轴,垂足为H,过点C作CFl于F,连接DF(1)求抛物线解析式;(2)若线段DE是CD绕点D顺时针旋转90得到,求线段DF的长;(3)若线段DE是CD绕点D旋转90得到,且点E恰好在抛物线上,请求出点E的

9、坐标24(14分)如图,在ABC中,BC12,tanA,B30;求AC和AB的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值. 在确定n的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0).因此,88000一共5位,88000=8.88104. 故选B.考点:科学记数法.2、C【解析】科学记数法的表示形式为a10n的形式,其中1|

10、a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将27100用科学记数法表示为:. 2.71104.故选:C.【点睛】本题考查科学记数法表示较大的数。3、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题【详解】由图可得,甲步行的速度为:2404=60米/分,故正确,乙走完全程用的时间为:2400(166012)=30(分钟),故错误,乙追上甲用的时间为:164=12(分钟),故错误,乙到达终点时,甲离终点距离是:2400(4+30

11、)60=360米,故错误,故选A【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.4、C【解析】分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误故选C5、B【解析】根据平行线的性质得到根据BE平分ABD,即可求出1的度数【详解】解:BDAC,BE平分ABD,故选B【点睛】本题考

12、查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键6、C【解析】解:点A为数轴上的表示-1的动点,当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1故选C点睛:注意数的大小变化和平移之间的规律:左减右加与点A的距离为4个单位长度的点B有两个,一个向左,一个向右7、D【解析】试题分析:把一个数记成a10n(1a10,n整数位数少1)的形式,叫做科学记数法此题可记为12105平方米考点:科学记数法8、D【解析】根据有理数的除法可以解答本题【详解】解:(5)5=1,等式(5)5=1成立,则内的运算符号为

13、,故选D【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法9、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.10、D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:1613=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+145+154+162)1214.5,故选项D错误,

14、符合题意故选D“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键二、填空题(共7小题,每小题3分,满分21分)11、( , )【解析】连接AC,根据题意易证AOCCOB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.【详解】解:连接AC,A、B两点的横坐标分别为1,4,OA=1,OB=4,ACB=90,CAB+ABC=90,COAB,ABC+BCO=90,CAB=BCO,又AOC=BOC=90,AOCCOB,即=,解得OC=2,点C的坐标为(0,2),A、B两点的横

15、坐标分别为1,4,设抛物线解析式为y=a(x+1)(x4),把点C的坐标代入得,a(0+1)(04)=2,解得a=,y=(x+1)(x4)=(x23x4)=(x)2+,此抛物线顶点的坐标为( , )故答案为:( , )【点睛】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.12、【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论详解:平均数是12,这组数据的和=127=84,被墨汁覆盖三天的数的和=84412=36,这组数据唯一众数是13,被墨汁覆盖的三个数为:10,13,1

16、3, 故答案为点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.13、5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念14、1【解析】骑车的学生所占的百分比是100%=35%,步行的学生所占的百分比是110%15%35%=40%,若该校共有学生1500人,则据此估计步行的有150040%=1(人),故答案为115、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,则:PMB=90,当PMAB时,

17、PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=90,B=B,PB=OP+OB=7,PBMABO,即:,所以可得:PM=16、28【解析】设这种电子产品的标价为x元,由题意得:0.9x21=2120%,解得:x=28,所以这种电子产品的标价为28元故答案为28.17、60或120【解析】连接OA、OB,根据切线的性质得出OAP的度数,OBP的度数;再根据四边形的内角和是360,求出AOB的度数,有圆周角定理或圆内接四边形的性质,求出ACB的度数即可【详解】解:连接OA、OBP

18、A,PB分别切O于点A,B,OAPA,OBPB;PAO=PBO=90;又APB=60,在四边形AOBP中,AOB=360909060=120, 即当C在D处时,ACB=60在四边形ADBC中,ACB=180ADB=18060=120于是ACB的度数为60或120,故答案为60或120【点睛】本题考查的是切线的性质定理,圆内接四边形的性质,是一道基础题三、解答题(共7小题,满分69分)18、(1)y=-x2+2x+2;(2)详见解析;(3)点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【解析】(1)根据题意得出方程组,求出b、c的值,即可求出答案;(2)求出B、C的坐标,

19、根据点的坐标求出AB、BC、AC的值,根据勾股定理的逆定理求出即可;(3)分为两种情况,画出图形,根据相似三角形的判定和性质求出PE的长,即可得出答案【详解】解:(1)由题意得:,解得:,抛物线的解析式为y=-x2+2x+2;(2)由y=-x2+2x+2得:当x=0时,y=2,B(0,2),由y=-(x-1)2+3得:C(1,3),A(3,-1),AB=3,BC=,AC=2,AB2+BC2=AC2,ABC=90,ABC是直角三角形;(3)如图,当点Q在线段AP上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=AQPEAD,PQEAQD,=1,PE=AD=1由

20、-x2+2x+2=1得:x=1,P(1+,1)或(1-,1),如图,当点Q在PA延长线上时,过点P作PEx轴于点E,ADx轴于点DSOPA=2SOQA,PA=2AQ,PQ=3AQPEAD,PQEAQD,=3,PE=3AD=3由-x2+2x+2=-3得:x=1,P(1+,-3),或(1-,-3),综上可知:点P的坐标为(1+,1)、(1-,1)、(1+,-3)或(1-,-3)【点睛】本题考查了二次函数的图象和性质,用待定系数法求二次函数的解析式,相似三角形的性质和判定等知识点,能求出符合的所有情况是解此题的关键19、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或【解析

21、】(2)先求出OCOB=2,设OD=x,得出CD=AD=OAOD=2x,根据勾股定理得:(2x)2x2=2求出x,即可得出结论;(2)先判断出,进而得出CBE=BCE,再判断出OBEEBC,即可得出结论;(3)分两种情况:当CD=CE时,判断出四边形ADCE是菱形,得出OCE=90在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,建立方程求解即可;当CD=DE时,判断出DAE=DEA,再判断出OAE=OEA,进而得出DEA=OEA,即:点D和点O重合,即可得出结论【详解】(2)C是半径OB中点,OCOB=2DE是AC的垂直平分线,AD=CD设OD

22、=x,CD=AD=OAOD=2x在RtOCD中,根据勾股定理得:(2x)2x2=2,x,CD,sinOCD;(2)如图2,连接AE,CEDE是AC垂直平分线,AE=CEE是弧AB的中点,AE=BE,BE=CE,CBE=BCE连接OE,OE=OB,OBE=OEB,CBE=BCE=OEBB=B,OBEEBC,BE2=BOBC;(3)DCE是以CD为腰的等腰三角形,分两种情况讨论:当CD=CE时DE是AC的垂直平分线,AD=CD,AE=CE,AD=CD=CE=AE,四边形ADCE是菱形,CEAD,OCE=90,设菱形的边长为a,OD=OAAD=2a在RtOCE中,OC2=OE2CE2=4a2在RtC

23、OD中,OC2=CD2OD2=a2(2a)2,4a2=a2(2a)2,a=22(舍)或a=;CD=;当CD=DE时DE是AC垂直平分线,AD=CD,AD=DE,DAE=DEA连接OE,OA=OE,OAE=OEA,DEA=OEA,点D和点O重合,此时,点C和点B重合,CD=2综上所述:当DCE是以CD为腰的等腰三角形时,CD的长为2或【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键20、(1)yx2+4;(2)E(5,9);1.【解析】(1)待定系数法即可解题,(2)求出直线DA的解析式,根据顶点E在直线DA上,设出E

24、的坐标,带入即可求解;AB扫过的面积是平行四边形ABGE,根据S四边形ABGES矩形IOKHSAOBSAEISEHGSGBK,求出点B(2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题.【详解】解:(1)A(0,4),B(2,0),C(2,0)二次函数的图象的顶点为A(0,4),设二次函数表达式为yax2+4,将B(2,0)代入,得4a+40,解得,a1,二次函数表达式yx2+4;(2)设直线DA:ykx+b(k0),将A(0,4),D(4,0)代入,得 ,解得, ,直线DA:yx+4,由题意可知,平移后的抛物线的顶点E在直线DA上,设顶点E(m,m+4),平移后的

25、抛物线表达式为y(xm)2+m+4,又平移后的抛物线过点B(2,0),将其代入得,(2m)2+m+40,解得,m15,m20(不合题意,舍去),顶点E(5,9),如图,连接AB,过点B作BLAD交平移后的抛物线于点G,连结EG,四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GKx轴于点K,过点E作EIy轴于点I,直线EI,GK交于点H由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点GB(2,0),点G(7,5),GK5,OB2,OK7,BKOKOB725,A(0,4),E(5,9),AI945,EI5,EH752,HG954,S四边形

26、ABGES矩形IOKHSAOBSAEISEHGSGBK7924552455638251答:图象A,B两点间的部分扫过的面积为1【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.21、5.6千米【解析】设PD的长为x千米,DA的长为y千米,在RtPAD中利用正切的定义得到tan18=,即y=0.33x,同样在RtPDB中得到y+5.6=1.33x,所以0.33x+5.6=1.33x,然后解方程求出x即可【详解】设PD的长为x千米,DA的长为y千米,在RtPAD中,tanDPA=,即tan18=,y=0.33x,在RtPD

27、B中,tanDPB=,即tan53=,y+5.6=1.33x,0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案22、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得 .解得x83.检验:当x83时,3x0.所以x83是原分式方程的解答:这项工程的规定时间是83天【点睛】正确理解题意是解题的关键,注意检验.23、 (1) 抛物线解析式为y=;(2)

28、 DF=3;(3) 点E的坐标为E1(4,1)或E2( ,)或E3( ,)或E4(,)【解析】(1)将点A、C坐标代入抛物线解析式求解可得;(2)证CODDHE得DH=OC,由CFFH知四边形OHFC是矩形,据此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)设点D的坐标为(t,0),由(1)知CODDHE得DH=OC、EH=OD,再分CD绕点D顺时针旋转和逆时针旋转两种情况,表示出点E的坐标,代入抛物线求得t的值,从而得出答案【详解】(1)抛物线y=+bx+c交x轴于点A(2,0)、C(0,3),解得:,抛物线解析式为y=+x+3;(2)如图1CDE=90,COD=DHE=90,O

29、CD+ODC=HDE+ODC,OCD=HDE又DC=DE,CODDHE,DH=OC又CFFH,四边形OHFC是矩形,FH=OC=DH=3,DF=3;(3)如图2,设点D的坐标为(t,0)点E恰好在抛物线上,且EH=OD,DHE=90,由(2)知,CODDHE,DH=OC,EH=OD,分两种情况讨论:当CD绕点D顺时针旋转时,点E的坐标为(t+3,t),代入抛物线y=+x+3,得:(t+3)2+(t+3)+3=t,解得:t=1或t=,所以点E的坐标E1(4,1)或E2(,);当CD绕点D逆时针旋转时,点E的坐标为(t3,t),代入抛物线y=+x+3得:(t3)2+(t3)+3=t,解得:t=或t

30、=故点E的坐标E3(,)或E4(,); 综上所述:点E的坐标为E1(4,1)或E2(,)或E3(,)或E4(,)【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、全等三角形的判定与性质、矩形的判定与性质及分类讨论思想的运用24、8+6【解析】如图作CHAB于H在RtBHC求出CH、BH,在RtACH中求出AH、AC即可解决问题;【详解】解:如图作CHAB于H在RtBCH中,BC12,B30,CHBC6,BH6,在RtACH中,tanA,AH8,AC10,【点睛】本题考查解直角三角形,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁