江西省鄱阳县第二中学2022-2023学年中考数学模拟精编试卷含解析.doc

上传人:lil****205 文档编号:88305545 上传时间:2023-04-25 格式:DOC 页数:22 大小:882.50KB
返回 下载 相关 举报
江西省鄱阳县第二中学2022-2023学年中考数学模拟精编试卷含解析.doc_第1页
第1页 / 共22页
江西省鄱阳县第二中学2022-2023学年中考数学模拟精编试卷含解析.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《江西省鄱阳县第二中学2022-2023学年中考数学模拟精编试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省鄱阳县第二中学2022-2023学年中考数学模拟精编试卷含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1我们从不同的方向观察同一物体时,可能看到不同的图形,则从正面、左面、上面观察都不可能看到矩形的是()ABCD2如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n1)个点.当n2018时,这个图形总的点数S为()A8064B8067C8068D80723某圆锥的主视图是一个边长为3cm

2、的等边三角形,那么这个圆锥的侧面积是()A4.5cm2B3cm2C4cm2D3cm24关于ABCD的叙述,不正确的是()A若ABBC,则ABCD是矩形B若ACBD,则ABCD是正方形C若ACBD,则ABCD是矩形D若ABAD,则ABCD是菱形5小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是BOA的角平分线”他这样做的依据是()A角的内部到角的两边的距离相等的点在角的平分线上B角平分线上的点到这个角两边的距离相等C三角形三条角平分线的交点到三条边的距

3、离相等D以上均不正确6碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米0.000000001米,则0.5纳米用科学记数法表示为()A0.5109米B5108米C5109米D51010米7的立方根是( )A8B4C2D不存在8如图,在中,点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结给出以下四个结论:;点是的中点;,其中正确的个数是( )A4B3C2D19如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A4B3C2D110一元二次方程x2+x2=0的根的情况是()A有两个不相等的

4、实数根B有两个相等的实数根C只有一个实数根D没有实数根二、填空题(本大题共6个小题,每小题3分,共18分)11如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_12将一张长方形纸片折叠成如图所示的形状,则ABC=_132017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为_14如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_.15经过两次连续降价,某药品销售单价由原来的50元降到32元,

5、设该药品平均每次降价的百分率为x,根据题意可列方程是_16计算:21+=_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,直线yx+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线yx+2上一点,直线yx+b过点C求m和b的值;直线yx+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动设点P的运动时间为t秒若点P在线段DA上,且ACP的面积为10,求t的值;是否存在t的值,使ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由18(8分)如图,在ABC中,ABAC4,A36在AC边上确定点D,使得ABD与BCD都是等腰三角形,并求BC

6、的长(要求:尺规作图,保留作图痕迹,不写作法)19(8分)如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(3,0)(1)求点B的坐标;(2)已知,C为抛物线与y轴的交点若点P在抛物线上,且,求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值20(8分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10,待加热到100,饮水机自动停止加热,水温开始下降,水温y()和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程设某天水温和室温为20

7、,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0x8和8xa时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40的开水,问他需要在什么时间段内接水21(8分)已知,如图所示直线y=kx+2(k0)与反比例函数y=(m0)分别交于点P,与y轴、x轴分别交于点A和点B,且cosABO=,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式(2)若AC是PCB的中线,求反比例函数的关系式22(10分)如图是一副创意卡通圆规,图是其平面示意图,OA是支撑臂,OB是旋转臂使用时,以点A为支撑

8、点,铅笔芯端点B可绕点A旋转作出圆已知OAOB10cm.(1)当AOB18时,求所作圆的半径(结果精确到0.01cm);(2)保持AOB18不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin90.1564,cos90.9877,sin180.3090,cos180.9511,可使用科学计算器)23(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5)()求二次函数的解析式及点A,B的坐标;()设点Q在第一象限的抛物线上

9、,若其关于原点的对称点Q也在抛物线上,求点Q的坐标;()若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标24学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生

10、,请用画树状图或列表法求出刚好抽到不同性别学生的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到矩形的图形【详解】A、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;C、主视图为等腰梯形,左视图为等腰梯形,俯视图为圆环,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误故选C【点睛】本题重点考查了三视图的定义考查

11、学生的空间想象能力,关键是根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形解答2、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次 如当n=2时,共有S2=424=4;当n=3时,共有S3=434,依此类推,即Sn=4n4,当n=2018时,S2018=420184=1 故选C点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律3、A【解析】根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长母线长2求出即可【详解】圆锥

12、的轴截面是一个边长为3cm的等边三角形,底面半径1.5cm,底面周长3cm,圆锥的侧面积334.5cm2,故选A【点睛】此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长母线长2得出4、B【解析】由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论【详解】解:A、若ABBC,则是矩形,正确;B、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B【点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键5、A【解析】过两把直尺的交点C作CFBO与点F,由题意得CEAO,因为是两把完全相同的长

13、方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分AOB【详解】如图所示:过两把直尺的交点C作CFBO与点F,由题意得CEAO,两把完全相同的长方形直尺,CE=CF,OP平分AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理6、D【解析】解:0.5纳米=0.50.000 000 001米=0.000 000 000 5米=51010米故选D点睛:在负指数科学计数法 中,其中 ,n等于第一个非0数字前所有0的个数(包括下数点前面的0

14、).7、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案详解:, 的立方根为2,故选C点睛:本题主要考查的是算术平方根与立方根,属于基础题型理解算术平方根与立方根的含义是解决本题的关键8、C【解析】用特殊值法,设出等腰直角三角形直角边的长,证明CDBBDE,求出相关线段的长;易证GABDBC,求出相关线段的长;再证AGBC,求出相关线段的长,最后求出ABC和BDF的面积,即可作出选择【详解】解:由题意知,ABC是等腰直角三角形,设ABBC2,则AC2,点D是AB的中点,ADBD1,在RtDBC中,DC,(勾股定理)BGCD,DEBABC90,又CDBBDE,CDBBDE,DBED

15、CB, ,即DE ,BE,在GAB和DBC中,GABDBC(ASA)AGDB1,BGCD,GAB+ABC180,AGBC,AGFCBF,且有ABBC,故正确,GB,AC2,AF,故正确,GF,FEBGGFBE,故错误,SABCABAC2,SBDFBFDE,故正确故选B【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键9、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 (

16、66)2+(76)2+(36)2+(96)2+(56)2=4,故选A点睛:此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个数方差是一组数据中各数据与它们的平均数的差的平方的平均数10、A【解析】=12-41(-2)=90,方程有两个不相等的实数根.故选A.点睛:本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b24ac:当0时,一元二次方程有两个不相等的实数根;当=0时,一元二次方程有两个相等的实数根;当0时,一元二次方程没有实数根. 二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出

17、AD、OD的长度,即可解决问题【详解】解:四边形OABC是矩形,OA=BC,AB=OC,tanBOC=,AB=2OA,OB=,OA=2,AB=2OA由OA翻折得到,OA= OA=2如图,过点A作ADx轴与点D;设AD=a,OD=b;四边形ABCO为矩形,OAB=OCB=90;四边形ABAD为梯形;设AB=OC=a,BC=AO=b;OB=,tanBOC=,解得: ;由题意得:AO=AO=2;ABOABO;由勾股定理得:x2+y2=2,由面积公式得:xy+222(x+2)(y+2);联立并解得:x=,y=故答案为(,)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性

18、质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求12、73【解析】试题解析:CBD=34,CBE=180-CBD=146,ABC=ABE=CBE=7313、【解析】过点C作CECF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.【详解】解:延长BA交CE于点E,设CFBF于点F,如图所示在RtBDF中,BFn,DBF30,在RtACE中,AEC90,ACE45,AECEBFn,故答案为:【点睛】此题考查解直角三角形的应用,解题的关键在于做辅助线.14、2【解析】分析:由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,设高为h

19、,则62h=16,解得:h=1它的表面积是:212+262+162=215、50(1x)2=1【解析】由题意可得,50(1x)=1,故答案为50(1x)=1.16、【解析】根据负整指数幂的性质和二次根式的性质,可知=.故答案为.三、解答题(共8题,共72分)17、(1)4,5;(2)7;4或 或或8.【解析】分别令可得b和m的值;根据的面积公式列等式可得t的值;存在,分三种情况:当时,如图1,当时,如图2,当时,如图3,分别求t的值即可【详解】把点代入直线中得:,点,直线过点C,;由题意得:,中,当时,中,当时,的面积为10,则t的值7秒;存在,分三种情况:当时,如图1,过C作于E,即;当时,

20、如图2,;当时,如图3,即;综上,当秒或秒或秒或8秒时,为等腰三角形【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题18、【解析】作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长【详解】如图所示,作BD平分ABC交AC于D,则ABD、BCD、ABC均为等腰三角形,ACBD36,CC,ABCBDC,设BCBDADx,则CD4x,BC2ACCD,x24(4x),解得x1,x2(舍去

21、),BC的长【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作19、(1)点B的坐标为(1,0).(2)点P的坐标为(4,21)或(4,5).线段QD长度的最大值为.【解析】(1)由抛物线的对称性直接得点B的坐标(2)用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为(q,-q-3),从而由QDx轴交抛物线于点D,得点D的坐标为(q,q2+2q-3),从而线段QD

22、等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)A、B两点关于对称轴对称 ,且A点的坐标为(3,0),点B的坐标为(1,0).(2)抛物线,对称轴为,经过点A(3,0),解得.抛物线的解析式为.B点的坐标为(0,3).OB=1,OC=3.设点P的坐标为(p,p2+2p-3),则.,解得.当时;当时,点P的坐标为(4,21)或(4,5).设直线AC的解析式为,将点A,C的坐标代入,得:,解得:.直线AC的解析式为.点Q在线段AC上,设点Q的坐标为(q,-q-3).又QDx轴交抛物线于点D,点D的坐标为(q,q2+2q-3).,线段QD长度的最大值为.20、(1)当0

23、x8时,y=10x+20;当8xa时,y=;(2)40;(3)要在7:508:10时间段内接水【解析】(1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标分别代入yk1xb,即可求得k1、b的值,从而得一次函数的解析式;当8xa时,设y,将(8,100)的坐标代入y,求得k2的值,即可得反比例函数的解析式;(2)把y20代入反比例函数的解析式,即可求得a值;(3)把y40代入反比例函数的解析式,求得对应x的值,根据想喝到不低于40 的开水,结合函数图象求得x的取值范围,从而求得李老师接水的时间范围【详解】解: (1)当0x8时,设yk1xb,将(0,20),(8,100)的坐标

24、分别代入yk1xb,可求得k110,b20当0x8时,y10x20.当8xa时,设y,将(8,100)的坐标代入y,得k2800当8xa时,y.综上,当0x8时,y10x20;当8xa时,y(2)将y20代入y,解得x40,即a40.(3)当y40时,x20要想喝到不低于40 的开水,x需满足8x20,即李老师要在7:38到7:50之间接水【点睛】本题主要考查了一次函数及反比例函数的应用题,是一个分段函数问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际21、(2)y=2x+2;(2)y=【解析】(2)由cosABO,可得到tanABO2

25、,从而可得到k2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值【详解】(2)cosABO=,tanABO=2又OA=2OB=2B(-2,0)代入y=kx+2得k=2一次函数的解析式为y=2x+2(2)当x=0时,y=2,A(0,2)当y=0时,2x+2=0,解得:x=2B(2,0)AC是PCB的中线,P(2,4)m=xy=24=4,反例函数的解析式为y=【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数ktanABO是解题的关键22、 (1)3.13cm(2)铅笔芯折断部

26、分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OCAB于点C,根据OA=OB=10cm,OCB=90,AOB=18,可以求得BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决试题解析:(1)作OCAB于点C,如右图2所示,由题意可得,OA=OB=10cm,OCB=90,AOB=18,BOC=9,AB=2BC=2OBsin92100.15643.13cm,即所作圆的半径约为3.13cm;(2)作ADOB于点D,作AE=AB,如下图3所示,保持AOB=18不变,

27、在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,折断的部分为BE,AOB=18,OA=OB,ODA=90,OAB=81,OAD=72,BAD=9,BE=2BD=2ABsin923.130.15640.98cm,即铅笔芯折断部分的长度是0.98cm考点:解直角三角形的应用;探究型23、(1)y=x2+4x+5,A(1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M(3,8),N(2,3)【解析】(1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;(2)设点Q(m,m2+4m+5),则其关于原点的对称点Q(m,m

28、24m5),再将Q坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;(3)利用平移AC的思路,作MK对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.【详解】()设二次函数的解析式为y=a(x2)2+9,把C(0,5)代入得到a=1,y=(x2)2+9,即y=x2+4x+5,令y=0,得到:x24x5=0,解得x=1或5,A(1,0),B(5,0)()设点Q(m,m2+4m+5),则Q(m,m24m5)把点Q坐标代入y=x2+4x+5,得到:m24m5=m24m+5,m=或(舍弃),Q(,)()如图,作MK对称轴x=2于K当MK=OA,

29、NK=OC=5时,四边形ACNM是平行四边形此时点M的横坐标为1,y=8,M(1,8),N(2,13),当MK=OA=1,KN=OC=5时,四边形ACMN是平行四边形,此时M的横坐标为3,可得M(3,8),N(2,3)【点睛】本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.24、(1)150;(2)详见解析;(3).【解析】(1)用A类人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去A、C、D得到B类人数,再计算出它所占的百分比,然后补全两个统计图;(3)画树状图展示所有20种等可能的结果数,再找出刚好抽到不同性别学生的结果数,然后利用概率公式求解【详解】解:(1)1510%=150,所以共调查了150名学生;(2)喜欢“立定跳远”学生的人数为150156030=45,喜欢“立定跳远”的学生所占百分比为120%40%10%=30%,两个统计图补充为:(3)画树状图为:共有20种等可能的结果数,其中刚好抽到不同性别学生的结果数为12,所以刚好抽到不同性别学生的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁