《江苏省连云港市赣榆实验中学2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省连云港市赣榆实验中学2023年中考数学押题试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:西游记
2、、施耐庵、安徒生童话、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )ABCD2如果,那么代数式的值是( )A6B2C-2D-63苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需()A(a+b)元B(3a+2b)元C(2a+3b)元D5(a+b)元4如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A cmBcmCcmD cm5如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角ABO为,则树OA的高度为( )A米B30sin米C30tan米D30cos米6用配
3、方法解下列方程时,配方有错误的是( )A化为B化为C化为D化为7在平面直角坐标系中,已知点A(4,2),B(6,4),以原点O为位似中心,相似比为,把ABO缩小,则点A的对应点A的坐标是()A(2,1)B(8,4)C(8,4)或(8,4)D(2,1)或(2,1)8从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()ABCD9一元二次方程x22x0的根是()Ax2Bx0Cx10,x22Dx10,x2210足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢
4、出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814下列结论:足球距离地面的最大高度为20m;足球飞行路线的对称轴是直线;足球被踢出9s时落地;足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是( )A1B2C3D411小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达若设走路线一时的平均速度为x千米/小时,根据题意,得ABCD12如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕若A
5、B=9,BC=3,试求以折痕EF为边长的正方形面积()A11B10C9D16二、填空题:(本大题共6个小题,每小题4分,共24分)13如果实数x、y满足方程组,求代数式(+2)14若a,b互为相反数,则a2b2=_15如图,C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(,0),M 是圆上一点,BMO=120C 圆心 C 的坐标是_16如图,点A(m,2),B(5,n)在函数(k0,x0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A、B图中阴影部分的面积为8,则k的值为 17如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建
6、筑物的高是_ 18某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为S甲2=8.5,S乙2=2.5,S丙2=10.1,S丁2=7.4,二月份白菜价格最稳定的市场是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率20(6分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延
7、长线上,且CBF=CAB(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=,求BC和BF的长21(6分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对1235岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图请根据图中的信息,回答下列问题:(1)这次抽样调查中共调查了人;(2)请补全条形统计图;(3)扇形统计图中1823岁部分的圆心角的度数是;(4)据报道,目前我国1235岁网瘾人数约为2000万,请估计其中1223岁的人数 22(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、
8、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人23(8分)如图,矩形ABCD中,CEBD于E,CF平分DCE与DB交于点F求证:BFBC;若AB4cm,AD3cm,求CF的长24(10分)如图,在等腰ABC中,ABAC,以AB为直径的O与BC相交于点D且BD2AD,过点D作DEAC交BA延
9、长线于点E,垂足为点F(1)求tanADF的值;(2)证明:DE是O的切线;(3)若O的半径R5,求EF的长25(10分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元 (1)求A、B两种钢笔每支各多少元? (2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案? (3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元
10、,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?26(12分)如图,在ABC中,C90,CAB50,按以下步骤作图:以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;作射线AG,交BC边于点D则ADC的度数为( )A40B55C65D7527(12分)先化简分式: (-),再从-3、-3、2、-2中选一个你喜欢的数作为的值代入求值参考答案一、选择题(本大题共12个小题,每小题
11、4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是;故选D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比2、A【解析】【分析
12、】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】3a2+5a-1=0,3a2+5a=1,5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.3、C【解析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可【详解】买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,共用去:(2a+3b)元.故选C.【点睛】本
13、题主要考查列代数式,总价=单价乘数量.4、B【解析】试题解析:菱形ABCD的对角线 根据勾股定理, 设菱形的高为h,则菱形的面积 即 解得 即菱形的高为cm故选B5、C【解析】试题解析:在RtABO中,BO=30米,ABO为,AO=BOtan=30tan(米)故选C考点:解直角三角形的应用-仰角俯角问题6、B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:、,故选项正确、,故选项错误、,故选项正确、,故选项正确故选:【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二
14、次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数7、D【解析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案【详解】点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把ABO缩小,点A的对应点A的坐标是:(-2,1)或(2,-1)故选D【点睛】此题考查了位似图形与坐标的关系此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于k8、C【解析】左视图就是从物体的左边往右边看小正方形应该在右上角,故B错误,看不到的线要用虚线,故A错误,
15、大立方体的边长为3cm,挖去的小立方体边长为1cm,所以小正方形的边长应该是大正方形,故D错误,所以C正确故此题选C9、C【解析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解【详解】方程变形得:x(x1)0,可得x0或x10,解得:x10,x11故选C【点睛】考查了解一元二次方程因式分解法,熟练掌握因式分解的方法是解本题的关键10、B【解析】试题解析:由题意,抛物线的解析式为y=ax(x9),把(1,8)代入可得a=1,y=t2+9t=(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故错误,抛物线的对称轴t=4.5,故正确,t=9
16、时,y=0,足球被踢出9s时落地,故正确,t=1.5时,y=11.25,故错误,正确的有,故选B11、A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程解:设走路线一时的平均速度为x千米/小时,故选A12、B【解析】根据矩形和折叠性质可得EHCFBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9x,在RtBCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案【详解】
17、如图,四边形ABCD是矩形,AD=BC,D=B=90,根据折叠的性质,有HC=AD,H=D,HE=DE,HC=BC,H=B,又HCE+ECF=90,BCF+ECF=90,HCE=BCF,在EHC和FBC中,EHCFBC,BF=HE,BF=HE=DE,设BF=EH=DE=x,则AF=CF=9x,在RtBCF中,由BF2+BC2=CF2可得x2+32=(9x)2,解得:x=4,即DE=EH=BF=4,则AG=DE=EH=BF=4,GF=ABAGBF=944=1,EF2=EG2+GF2=32+12=10,故选B【点睛】本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,
18、熟练掌握各相关的性质定理与判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】解:原式=xy+2x+2y,方程组:,解得:,当x=3,y=1时,原式=3+62=1故答案为1点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键14、1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】a,b互为相反数,a+b=1,a2b2=(a+b)(ab)=1,故答案为1【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键15、(,)【解析】连接AB,OC,由圆周角定理可知AB为C的直径,再根据BMO=120可
19、求出BAO以及BCO的度数,在RtCOD中,解直角三角形即可解决问题;【详解】连接AB,OC,AOB=90,AB为C的直径,BMO=120,BAO=60,BCO=2BAO=120,过C作CDOB于D,则OD=OB,DCB=DCO=60,B(-,0),BD=OD=在RtCOD中CD=ODtan30=,C(-,),故答案为C(-,)【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键16、2【解析】试题分析:将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为
20、A、B,图中阴影部分的面积为8,5m=4,m=2,A(2,2),k=22=2故答案为2考点:2反比例函数系数k的几何意义;2平移的性质;3综合题17、10.5【解析】先证AEBABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BEAC,DCACBE/DC,AEBADC,即:,CD10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.18、乙【解析】据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,即可得出答案【详解】解:S甲2=8.
21、5,S乙2=2.5,S丙2=10.1,S丁2=7.4,S乙2S丁2S甲2S丙2,二月份白菜价格最稳定的市场是乙;故答案为:乙【点睛】本题考查方差的意义解题关键是掌握方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1);(2)【解析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【详
22、解】解:(1)垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=【点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比20、(1)证明见解析;(2)BC=;. 【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三
23、角形两锐角相等得到直角,从而证明ABF=90(2)利用已知条件证得AGCABF,利用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90,1+2=90AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90即ABF=90AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90,AB=5,BE=ABsin1=,AB=AC,AEB=90,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=B
24、F=21、 (1)1500;(2)见解析;(3)108;(3)1223岁的人数为400万【解析】试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;(2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;(3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;(4)先计算调查中1223岁的人数所占的百分比,再求网瘾人数约为2000万中的1223岁的人数试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为33022%=1500人故答案为1500 ;
25、(2)1500-450-420-330=300人补全的条形统计图如图:(3)18-23岁这一组所对应的圆心角的度数为360=108故答案为108 ;(4)(300+450)1500=50%,考点:条形统计图;扇形统计图22、(1)图形见解析;(2)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得【详解】解:(1)被调查的总人数为2020%100(人),则辅导1个学科(B类别)的人数为100(20+30+10+5)35(人),补全图形如下:(2)根据
26、本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000 1(人),故答案为1【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键23、(1)见解析,(2)CFcm.【解析】(1)要求证:BF=BC只要证明CFB=FCB就可以,从而转化为证明BCE=BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角BCD中,根据三角形的面积等于BDCE=BCDC,就可以求出CE的长要求C
27、F的长,可以在直角CEF中用勾股定理求得其中EF=BF-BE,BE在直角BCE中根据勾股定理就可以求出,由此解决问题【详解】证明:(1)四边形ABCD是矩形,BCD90,CDB+DBC90CEBD,DBC+ECB90ECBCDBCFBCDB+DCF,BCFECB+ECF,DCFECF,CFBBCFBFBC(2)四边形ABCD是矩形,DCAB4(cm),BCAD3(cm)在RtBCD中,由勾股定理得BD又BDCEBCDC,CEBEEFBFBE3CFcm【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题24、
28、(1);(2)见解析;(3)【解析】(1) AB是O的直径,AB=AC,可得ADB=90,ADF=B,可求得tanADF的值;(2)连接OD,由已知条件证明ACOD,又DEAC,可得DE是O的切线;(3)由AFOD,可得AFEODE,可得后求得EF的长【详解】解:(1)AB是O的直径,ADB=90,AB=AC,BAD=CAD,DEAC,AFD=90,ADF=B,tanADF=tanB=;(2)连接OD,OD=OA,ODA=OAD,OAD=CAD,CAD=ODA,ACOD,DEAC,ODDE,DE是O的切线;(3)设AD=x,则BD=2x,AB=x=10,x=2,AD=2,同理得:AF=2,DF
29、=4,AFOD,AFEODE,=,EF=【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视25、(1) A种钢笔每只15元 B种钢笔每只20元;(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3) 定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得 ,解得: ,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:,42.4z45,z是整数z=43,44,90-z=47,或46;共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a+28a+680=-4(a-)+729,-40,W有最大值,a为正整数,当a=3,或a=4时,W最大,W最大=-4(3-)+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元26、C【解析】试题分析:由作图方法可得AG是CAB的角平分线,CAB=50,CAD=CAB=25,C=90,CDA=9025=65,故选C考点:作图基本作图27、 ;5【解析】原式=(-)=a=2,原式=5