《江苏省苏州市吴中学区横泾中学2022-2023学年中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州市吴中学区横泾中学2022-2023学年中考数学模拟预测题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1下列几何体中,主视图和俯视图都为矩形的是()ABCD2对于函数y=,下列说法正确的是()Ay是x的反比例函数B它的图象过原点C它的图象不经过第三象限Dy随x的增大而减小3如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是A5:2B3:2C3:1D2:14如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为()ABCD5如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数
3、和平均数分别是( )A30,28 B26,26 C31,30 D26,226如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角是45,旗杆低端D到大楼前梯砍底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度约为( )(精确到0.1米,参考数据:) A30.6米B32.1 米C37.9米D39.4米7如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A(4,4)B(3,3)C(3,1)D(4,1)8如图,已知点A,B
4、分别是反比例函数y=(x0),y=(x0)的图象上的点,且AOB=90,tanBAO=,则k的值为()A2B2C4D49分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx710下面说法正确的个数有()如果三角形三个内角的比是123,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形.A3个 B4个 C5个 D6个二
5、、填空题(本大题共6个小题,每小题3分,共18分)11如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),BD=2,SBCD=3,则SAOC=_12如图,边长为6的菱形ABCD中,AC是其对角线,B=60,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 13计算(a3)2(a2)3的结果等于_14某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为_15一个多边形的
6、每个内角都等于150,则这个多边形是_边形16已知点(1,m)、(2,n )在二次函数yax22ax1的图象上,如果mn,那么a_0(用“”或“”连接)三、解答题(共8题,共72分)17(8分)如图,AOB=45,点M,N在边OA上,点P是边OB上的点(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,若x=0时,使P、M、N构成等腰三角形的点P有个;若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是_18(8分)观察规律并填空._(用含n的代数式表示,n 是正整数,且 n 2)19(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之
7、间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37和60,在A处测得塔顶C的仰角为30,则通信塔CD的高度(sin370.60,cos370.80,tan370.75,=1.73,精确到0.1m)20(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了_名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名
8、同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.21(8分)如图,在ABC中,已知AB=AC=5,BC=6,且ABCDEF,将DEF与ABC重合在一起,ABC不动,DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点(1)求证:ABEECM;(2)探究:在DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积22(10分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C(1)当A(1,0),C(0,3)时,
9、求抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点当点P关于原点的对称点P落在直线BC上时,求m的值;当点P关于原点的对称点P落在第一象限内,PA2取得最小值时,求m的值及这个最小值23(12分)某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有_人
10、,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数24如图,是的外接圆,是的直径,过圆心的直线于,交于,是的切线,为切点,连接,(1)求证:直线为的切线;(2)求证:;(3)若,求的长参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】A、主视图为等腰三角形,俯视图为圆以及圆心,故A选项错误;B、主视图为矩形,俯视图为矩形,故B选项正确;C、主视图,俯视图均为圆,故C选项错误;D、主视图为矩形,俯视图为三角形,故D选项错误.故选:B.2、C【解析】直接利用
11、反比例函数的性质结合图象分布得出答案【详解】对于函数y=,y是x2的反比例函数,故选项A错误;它的图象不经过原点,故选项B错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键3、C【解析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积,阴影部分的面积,空白部分与阴影部分面积之比是:1,故选C【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型4、B【解析】先利用三角函
12、数求出BAE=45,则BE=AB=,DAE=45,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCDSABES扇形EAD进行计算即可【详解】解:AE=AD=2,而AB=,cosBAE=,BAE=45,BE=AB=,BEA=45ADBC,DAE=BEA=45,图中阴影部分的面积=S矩形ABCDSABES扇形EAD=2=21故选B【点睛】本题考查了扇形面积的计算阴影面积常用的方法:直接用公式法;和差法;割补法求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积5、B【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是
13、1,所以中位数是1平均数是(222+23+1+28+30+31)7=1,所以平均数是1故选B考点:中位数;加权平均数6、D【解析】解:延长AB交DC于H,作EGAB于G,如图所示,则GH=DE=15米,EG=DH,梯坎坡度i=1:,BH:CH=1:,设BH=x米,则CH=x米,在RtBCH中,BC=12米,由勾股定理得:,解得:x=6,BH=6米,CH=米,BG=GHBH=156=9(米),EG=DH=CH+CD=+20(米),=45,EAG=9045=45,AEG是等腰直角三角形,AG=EG=+20(米),AB=AG+BG=+20+939.4(米)故选D7、A【解析】利用位似图形的性质结合对
14、应点坐标与位似比的关系得出C点坐标【详解】以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,A点与C点是对应点,C点的对应点A的坐标为(2,2),位似比为1:2,点C的坐标为:(4,4)故选A【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键8、D【解析】首先过点A作ACx轴于C,过点B作BDx轴于D,易得OBDAOC,又由点A,B分别在反比例函数y= (x0),y=(x0)的图象上,即可得SOBD= ,SAOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作ACx轴于C,过点B作BDx轴于D,ACO=ODB=
15、90,OBD+BOD=90,AOB=90,BOD+AOC=90,OBD=AOC,OBDAOC,又AOB=90,tanBAO= ,=, = ,即 ,解得k=4,又k0,k=-4,故选:D【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。9、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.10、C【解析】
16、试题分析:三角形三个内角的比是1:2:3,设三角形的三个内角分别为x,2x,3x,x+2x+3x=180,解得x=30,3x=330=90,此三角形是直角三角形,故本小题正确;三角形的一个外角与它相邻的一个内角的和是180,若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;直角三角形的三条高的交点恰好是三角形的一个顶点,若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;A=B=C,设A=B=x,则C=2x,x+x+2x=180,解得x=45,2x=245=90,此三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻
17、的两内角之和,三角形的一个内角等于另两个内角之差,三角形一个内角也等于另外两个内角的和,这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确;三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,有一个内角一定是90,故这个三角形是直角三角形,故本小题正确故选D考点:1.三角形内角和定理;2.三角形的外角性质二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】由三角形BCD为直角三角形,根据已知面
18、积与BD的长求出CD的长,由OC+CD求出OD的长,确定出B的坐标,代入反比例解析式求出k的值,利用反比例函数k的几何意义求出三角形AOC面积即可【详解】BDCD,BD=2,SBCD=BDCD=2,即CD=2C(2,0),即OC=2,OD=OC+CD=2+2=1,B(1,2),代入反比例解析式得:k=10,即y=,则SAOC=1 故答案为1【点睛】本题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解答本题的关键12、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边
19、形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.13、1【解析】根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.【详解】解:原式=【点睛】本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.14、【解
20、析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知总共有12种结果,每种结果出现的可能性相同挑选的两位教师恰好是一男一女的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为=,故答案为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成
21、的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比15、1【解析】根据多边形的内角和定理:180(n-2)求解即可【详解】由题意可得:180(n-2)=150n,解得n=1故多边形是1边形16、;【解析】=a(x-1)2-a-1,抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m)、(2,n)在二次函数的图像上,|11|21|,且mn, a0.故答案为三、解答题(共8题,共72分)17、(1)见解析;(2)1;:x=0或x=44或4x4;【解析】(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2
22、)分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;如图1,构建腰长为4的等腰直角OMC,和半径为4的M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可【详解】解:(1)如图所示:(2)如图所示:故答案为1如图1,以M为圆心,以4为半径画圆,当M与OB相切时,设切点为C,M与OA交于D,MCOB,AOB=45,MCO是等腰直角三角形,MC=OC=4, 当M与D重
23、合时,即时,同理可知:点P恰好有三个;如图4,取OM=4,以M为圆心,以OM为半径画圆则M与OB除了O外只有一个交点,此时x=4,即以PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现M1与直线OB有一个交点;当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或 故答案为x=0或或【点睛】本题考查了等腰三角形的判定,有难度,本题
24、通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法18、 【解析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1)和(1+)相乘得出结果【详解】= =故答案为:【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题19、通信塔CD的高度约为15.9cm【解析】过点A作AECD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可【详解】过点A作AECD于E,则四边形ABDE是矩形,设CE=xcm,在RtAEC中,AEC=90,CAE=30,
25、所以AE=xcm,在RtCDM中,CD=CE+DE=CE+AB=(x+6)cm,DM=cm,在RtABM中,BM=cm,AE=BD,解得:x=+3,CD=CE+ED=+915.9(cm),答:通信塔CD的高度约为15.9cm【点睛】本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键20、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状
26、图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解
27、决问题的关键.21、(1)证明见解析;(2)能;BE=1或;(3)【解析】(1)证明:ABAC,BC,ABCDEF,AEFB,又AEFCEMAECBBAE,CEMBAE,ABEECM;(2)能AEFBC,且AMEC,AMEAEF,AEAM;当AEEM时,则ABEECM,CEAB5,BEBCEC651,当AMEM时,则MAEMEA,MAEBAEMEACEM,即CABCEA,又CC,CAECBA,CE,BE6;BE1或;(3)解:设BEx,又ABEECM,即:,CM,AM5CM,当x3时,AM最短为,又当BEx3BC时,点E为BC的中点,AEBC,AE,此时,EFAC,EM,SAEM22、(1)抛
28、物线的解析式为y=x33x1,顶点坐标为(1,4);(3)m=;PA3取得最小值时,m的值是,这个最小值是【解析】(1)根据A(1,3),C(3,1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)根据题意可以得到点P的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P落在直线BC上,从而可以求得m的值;根据题意可以表示出PA3,从而可以求得当PA3取得最小值时,m的值及这个最小值【详解】解:(1)抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(1,3),C(3,1),解得:,该抛物线的解析式为y=x
29、33x1y=x33x1=(x1)34,抛物线的顶点坐标为(1,4);(3)由P(m,t)在抛物线上可得:t=m33m1点P和P关于原点对称,P(m,t),当y=3时,3=x33x1,解得:x1=1,x3=1,由已知可得:点B(1,3)点B(1,3),点C(3,1),设直线BC对应的函数解析式为:y=kx+d,解得:,直线BC的直线解析式为y=x1点P落在直线BC上,t=m1,即t=m+1,m33m1=m+1,解得:m=;由题意可知,点P(m,t)在第一象限,m3,t3,m3,t3二次函数的最小值是4,4t3点P(m,t)在抛物线上,t=m33m1,t+1=m33m,过点P作PHx轴,H为垂足,
30、有H(m,3)又A(1,3),则PH3=t3,AH3=(m+1)3在RtPAH中,PA3=AH3+PH3,PA3=(m+1)3+t3=m33m+1+t3=t3+t+4=(t+)3+,当t=时,PA3有最小值,此时PA3=,=m33m1,解得:m=m3,m=,即PA3取得最小值时,m的值是,这个最小值是【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答23、 (1)450、63; 36,图见解析; (3)2460 人【解析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选
31、择类的人数.(2)求出类的百分比,乘以即可求出类对应的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果【详解】(1) 参与本次问卷调查的学生共有:(人);选择类的人数有: 故答案为450、63;(2)类所占的百分比为: 类对应的扇形圆心角的度数为: 选择类的人数为:(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000(1-14%-4%)=2460 人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据
32、;扇形统计图直接反映部分占总体的百分比大小24、(1)证明见解析;(2)证明见解析;(3)1【解析】(1)连接OA,由OP垂直于AB,利用垂径定理得到D为AB的中点,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP与三角形BOP全等,由PA为圆的切线,得到OA垂直于AP,利用全等三角形的对应角相等及垂直的定义得到OB垂直于BP,即PB为圆O的切线;(2)由一对直角相等,一对公共角,得出三角形AOD与三角形OAP相似,由相似得比例,列出关系式,由OA为EF的一半,等量代换即可得证【详解】(1)连接OB,PB是O的切线,PBO=90OA=OB,BAPO于D,AD=BD,POA=POB又PO=PO,PAOPBO PAO=PBO=90,直线PA为O的切线(2)由(1)可知,=90,即,是直径,是半径,整理得;(3)是中点,是中点,是的中位线,是直角三角形,在中,则,、是半径,在中,由勾股定理得:,即,解得:或(舍去),【点睛】本题考查了切线的判定与性质,相似及全等三角形的判定与性质以及锐角三角函数关系等知识,熟练掌握切线的判定与性质是解本题的关键