《江苏省淮阴中学2023年中考数学仿真试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省淮阴中学2023年中考数学仿真试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知直线 PQMN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使ABC是等腰三角形,则这样的 C 点有( )A3 个 B4 个 C7 个 D8 个2把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如
2、图所示的方式叠放在一起,延长LG交AF于点P,则APG()A141B144C147D1503如图,将ABC 绕点C顺时针旋转,使点B落在AB边上点B处,此时,点A的对应点 A恰好落在 BC 边的延长线上,下列结论错误的是( )ABCB=ACABACB=2BCBCA=BACDBC 平分BBA4按如图所示的方法折纸,下面结论正确的个数( )290;1AEC;ABEECF;BAE1A1 个B2 个C1 个D4 个5如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1026如图,在等腰直角ABC中,C=90,D为BC的中点,将ABC折叠,使点A与点
3、D重合,EF为折痕,则sinBED的值是()ABCD7施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务设原计划每天施工x米,所列方程正确的是()A=2B=2C=2D=28如图是一个空心圆柱体,其俯视图是( )A B C D9通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A10.7104B1.07105C1.7104D1.0710410如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD二、填空题(共7小题,每小题3分,
4、满分21分)11如图:图象均是以P0为圆心,1个单位长度为半径的扇形,将图形分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形的圆心依次为P1P2P3,第二次移动后图形的圆心依次为P4P5P6,依此规律,P0P2018=_个单位长度12如图,在平面直角坐标系中,P的圆心在x轴上,且经过点A(m,3)和点B(1,n),点C是第一象限圆上的任意一点,且ACB=45,则P的圆心的坐标是_13如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,ABC=90,点B在点A的右侧,点C在第一象限。将ABC绕点A逆时针旋转75,如果点
5、C的对应点E恰好落在y轴的正半轴上,那么边AB的长为_14在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=x2上有一动线段AB,当P点坐标为_时,PAB的面积最小15如图,在正方形中,对角线与相交于点,为上一点,为的中点若的周长为18,则的长为_16当x=_时,分式的值为零17如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_三、解答题(共7小题,满分69分)18(10分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角16,当缆车继续由
6、点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角42,求缆车从点A到点D垂直上升的距离(结果保留整数)(参考数据:sin160.27,cos160.77,sin420.66,cos420.74)19(5分)解不等式组20(8分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条超市约定:随机发放,早餐一人一份,一份两样,一样一个按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率21(10分)如图,在图中求作P,使P
7、满足以线段MN为弦且圆心P到AOB两边的距离相等(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)22(10分)如图,在中,,于, .求的长;.求 的长. 23(12分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?24(14分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,
8、现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0x20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析解:使ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个当以点
9、B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个所以共8个故选D点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏2、B【解析】先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得APG的度数【详解】(62)1806120,(52)1805108,APG(62)18012031082720360216144,故选B【点睛】本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n2)180 (n3)且n为整数)3、C【解析】根据旋转的性质求解即可【详解】解:根据旋转的性质,A:与均为旋转角,故=,
10、故A正确;B:,又,故B正确;D:,BC平分BBA,故D正确.无法得出C中结论,故答案:C.【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件4、C【解析】1+1=2,1+1+2=180,1+1=2=90,故正确;1+1=2,1AEC.故不正确;1+1=90,1+BAE=90,1=BAE,又BC,ABEECF.故,正确;故选C.5、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180
11、.6、B【解析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解【详解】DEF是AEF翻折而成,DEFAEF,A=EDF,ABC是等腰直角三角形,EDF=45,由三角形外角性质得CDF+45=BED+45,BED=CDF,设CD=1,CF=x,则CA=CB=2,DF=FA=2-x,在RtCDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=,sinBED=sinCDF=故选B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形
12、外角的性质,涉及面较广,但难易适中7、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间实际所用时间=2,列出方程即可详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程8、D【解析】根据从上边看得到的图形是俯视图,可得答案【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D【点睛】本题考查了三视图,明确俯视图是从物体上方看得到的图形是解题的关键.9、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值
13、时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:10700=1.07104,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接
14、OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10,OP1B=10,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据
15、P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;2018=3672+2,点P2018在正南方向上,P0P2018=672+1=1,故答案为1【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找
16、到各部分的变化规律后直接利用规律求解探寻规律要认真观察、仔细思考,善用联想来解决这类问题12、(2,0)【解析】【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:APB=90,再证明BPEPAF,根据PE=AF=3,列式可得结论【详解】连接PB、PA,过B作BEx轴于E,过A作AFx轴于F,A(m,3)和点B(1,n),OE=1,AF=3,ACB=45,APB=90,BPE+APF=90,BPE+EBP=90,APF=EBP,BEP=AFP=90,PA=PB,BPEPAF,PE=AF=3,设P(a,0),a+1=3,a=2,P(2,0),故答案为(2,0)【点睛】本题考
17、查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键13、【解析】依据旋转的性质,即可得到,再根据,即可得出,最后在中,可得到【详解】依题可知,在中,在中,故答案为:【点睛】本题考查了坐标与图形变化,等腰直角三角形的性质以及含30角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标14、(-1,2)【解析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线
18、向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,直线y=-x-2+b与抛物线y=x2+x+2相切,x2+x+2=-x-2+b,即x2+2x+4-b=0,则=4-4(4-b)=0,b=3,平移后的直线为y=-x+1,解得x=-1,y=2,P点坐标为(-1,2),故答案为(-1,2)【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键15、【解析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论【详解】解:四边形是正方形,在中,为的中点
19、,的周长为18,在中,根据勾股定理,得,在中,为的中点,又为的中位线,故答案为:.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中16、2【解析】根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算即可【详解】解:依题意得:2x=1且2x+21解得x=2,故答案为2【点睛】本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键17、5【解析】作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可
20、知,求出PE即可解决问题【详解】解:作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q四边形ABCD是矩形,ADC=90,DQAE,DE=AD,QE=QA,QA+QP=QE+QP=EP,此时QA+QP最短(垂线段最短),CAB=30,DAC=60,在RtAPE中,APE=90,AE=2AD=10,EP=AEsin60=10=5故答案为5【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型三、解答题(共7小题,满分69分)18、缆车垂直上升了186 m【解析】在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上
21、升的距离【详解】解:在Rt中,斜边AB=200米,=16,(m),在Rt中,斜边BD=200米,=42, 因此缆车垂直上升的距离应该是BC+DF=186(米)答:缆车垂直上升了186米【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键19、1x1【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可【详解】解不等式2x+11,得:x1,解不等式x+14(x2),得:x1,则不等式组的解集为1x1【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键20、(1)不可能;(2).【解析】(1)利用确定事件和随机事件的定
22、义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率21、见解析【解析】试题分析:先做出AOB的角平分线,再求出线段MN的垂直平分线就得到点P试题解析:考点
23、:尺规作图角平分线和线段的垂直平分线、圆的性质22、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,201525CD.23、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或
24、B的结果数目m,然后利用概率公式计算事件A或事件B的概率24、 (1)y10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【解析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量每千克利润总利润列出方程求解即可;(3)根据销售量每千克利润总利润列出函数解析式求解即可【详解】(1)设y与x之间的函数关系式为:ykx+b,把(2,120)和(4,140)代入得,解得:,y与x之间的函数关系式为:y10x+100;(2)根据题意得,(6040x)(10x+100)2090,解得:x1或x9,为了让顾客得到更大的实惠,x9,答:这种干果每千克应降价9元;(3)该干果每千克降价x元,商贸公司获得利润是w元,根据题意得,w(6040x)(10x+100)10x2+100x+2000,w10(x5)2+2250,a=-10,当x5时,故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识