《江苏省无锡市宜兴市宜城环科园教联盟2023年中考数学押题卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市宜兴市宜城环科园教联盟2023年中考数学押题卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1若0m2,则关于x的一元二次方程(x+m)(x+3m)3mx+37根的情况是()A无实数根B有两个正根C有两个根,且都大于3mD有两个根,其中一根大于m2某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件现在要使利润为元,每件商品应
2、降价( )元A3B2.5C2D53一、单选题点P(2,1)关于原点对称的点P的坐标是()A(2,1)B(2,1)C(1,2)D(1,2)4如图,在RtABC中,ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为()ABCD5如图,ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A相切B相交C相离D无法确定6已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D47如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得
3、几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变8一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()ABCD9如图,在菱形ABCD中,E是AC的中点,EFCB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A24B18C12D910如图是一个空心圆柱体,其俯视图是( )A B C D二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系中,函数y=(x0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF
4、的面积为_12某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_13如图所示,三角形ABC的面积为1cm1AP垂直B的平分线BP于P则与三角形PBC的面积相等的长方形是( )ABCD14已知点A,B的坐标分别为(2,3)、(1,2),将线段AB平移,得到线段AB,其中点A与点A对应,点B与点B对应,若点A的坐标为(2,3),则点B的坐标为_15计算的结果为_16如图,ABC的面积为6,平行于BC的两条直线分别交AB,AC于点D,E,F,G若AD=DF=FB,则四边形DFGE的面积为_三、解答题(共8题,共72分)17(8分)如图,在平面直
5、角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b1)x+c2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点当PQ=时,求P点坐标18(8分)如图1,将长为10的线段OA绕点O旋转90得到OB,点A的运动轨迹为,P是半径OB上一动点,Q是上的一动点,连接PQ(1)当POQ 时,PQ有最大值,最大值为 ;(2)如图2,若P是OB中点,且QPOB于点P,求的长;(3)如图3,将扇形AOB沿折痕AP折叠
6、,使点B的对应点B恰好落在OA的延长线上,求阴影部分面积19(8分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D处,直线l与CD边交于Q点(1)在图(1)中利用无刻度的直尺和圆规作出直线l(保留作图痕迹,不写作法和理由)(2)若PDPD,求线段AP的长度;求sinQDD20(8分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率21(8分)如图,在ABC中,AB=AC,点P、D分别是BC
7、、AC边上的点,且APD=B,求证:ACCD=CPBP;若AB=10,BC=12,当PDAB时,求BP的长22(10分)科技改变世界2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹没电的时候还会自己找充电桩充电某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递
8、公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?23(12分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最
9、大利润更高,并说明理由24已知抛物线y=2x2+4x+c(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(1,0),求方程2x2+4x+c=0的根参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】先整理为一般形式,用含m的式子表示出根的判别式,再结合已知条件判断的取值范围即可.【详解】方程整理为,方程没有实数根,故选A【点睛】本题考查了一元二次方程根的判别式,当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根2、A【解析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖
10、出300件,所以现在可以卖出300+20(60-x)件,然后根据盈利为6120元即可列出方程解决问题【详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)300+20(60-x)=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1每件商品应降价60-57=3元故选:A【点睛】本题考查了一元二次方程的应用此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键此题要注意判断所求的解是否符合题意,舍去不合题意的解3、A【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答【详解】解:点P(2,-1)关于原点对
11、称的点的坐标是(-2,1)故选A【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数4、B【解析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可【详解】由旋转可知AD=BD,ACB=90,AC=2,CD=BD,CB=CD,BCD是等边三角形,BCD=CBD=60,BC=AC=2,阴影部分的面积=222=2.故答案选:B.【点睛】本题考查的知识点是旋转的性质及扇形面积的计算,解题的关键是熟练的掌握旋转的性质及扇形面积的计算.5、B【解析】首先过点A作AMBC,根据三角形面积求出AM的长,得出直线BC与DE的
12、距离,进而得出直线与圆的位置关系【详解】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=2.1D、E分别是AC、AB的中点,DEBC,DE=BC=2.5,AN=MN=AM,MN=1.2以DE为直径的圆半径为1.25,r=1.251.2,以DE为直径的圆与BC的位置关系是:相交故选B【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键6、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两
13、个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原
14、方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键7、A【解析】分别得到将正方体移走前后的三视图,依此即可作出判断【详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一
15、个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.8、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率【详解】画树状图如下:一共有20种情况,其中两个球中至少有一
16、个红球的有14种情况,因此两个球中至少有一个红球的概率是:故选:D【点睛】此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比9、A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解【详解】E是AC中点,EFBC,交AB于点F,EF是ABC的中位线,BC=2EF=23=6,菱形ABCD的周长是46=24,故选A【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.10、D【解析】根据从上边看得到的图形是俯视图,可得答案【详解】该空心圆柱体的俯视图是圆环,如图所示:故选D【点睛】本题考查了三视图,明确俯视图是从物体上
17、方看得到的图形是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】设矩形OABC中点B的坐标为,点E、F是AB、BC的中点,点E、F的坐标分别为:、,点E、F都在反比例函数的图象上,SOCF=,SOAE=,S矩形OABC=,S四边形OEBF= S矩形OABC- SOAE-SOCF=.即四边形OEBF的面积为2.点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则SOPD=.12、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案【详解】由题意可知:100(1+x)2=12
18、1故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型13、B【解析】过P点作PEBP,垂足为P,交BC于E,根据AP垂直B的平分线BP于P,即可求出ABPBEP,又知APC和CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积【详解】解:过P点作PEBP,垂足为P,交BC于E,AP垂直B的平分线BP于P,ABP=EBP,又知BP=BP,APB=BPE=90,ABPBEP,AP=PE,APC和CPE等底同高,SAPC=SPCE,三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选
19、B14、(5,8)【解析】各对应点之间的关系是横坐标加4,纵坐标减6,那么让点B的横坐标加4,纵坐标减6即为点B的坐标【详解】由A(-2,3)的对应点A的坐标为(2,-13),坐标的变化规律可知:各对应点之间的关系是横坐标加4,纵坐标减6,点B的横坐标为1+4=5;纵坐标为-2-6=-8;即所求点B的坐标为(5,-8)故答案为(5,-8)【点睛】此题主要考查了坐标与图形的变化-平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律15、【解析】根据同分母分式加减运算法则化简即可【详解】原式,故答案为【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键16、1【解析】先根据题意可证
20、得ABCADE,ABCAFG,再根据ABC的面积为6分别求出ADE与AFG的面积,则四边形DFGE的面积=SAFG-SADE.【详解】解:DEBC,,ADEABC,AD=DF=FB,=()1,即=()1,SADE=;FGBC,AFGABC,=()1,即=()1,SAFG=;S四边形DFGE= SAFG- SADE=-=1.故答案为:1.【点睛】本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.三、解答题(共8题,共72分)17、(1)y=x2x+2;(2)2x0;(3)P点坐标为(1,2)【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二
21、次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PEx轴于点E,交AB于点D,根据题意得出PDQ=ADE=45,PD=1,然后设点P(x,x2x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标详解:(1)当y=0时,x+2=0,解得x=2,当x=0时,y=0+2=2,则点A(2,0),B(0,2),把A(2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得该抛物线的解析式为y=x2x+2;(2)ax2+(b1)x+c2,ax2+bx+cx+2,则不等式ax2+(b1)x+c2的解集为2x0;(3)如图,作PEx轴于点E,交AB于点
22、D,在RtOAB中,OA=OB=2,OAB=45,PDQ=ADE=45,在RtPDQ中,DPQ=PDQ=45,PQ=DQ=,PD=1,设点P(x,x2x+2),则点D(x,x+2),PD=x2x+2(x+2)=x22x,即x22x=1,解得x=1,则x2x+2=2,P点坐标为(1,2)点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型利用待定系数法求出函数解析式是解决这个问题的关键18、(1);(2);(3)【解析】(1)先判断出当PQ取最大时,点Q与点A重合,点P与点B重合,即可得出结论;(2)先判断出POQ60,最后用弧长用弧长公式即可得出结论;(3)先在RtBOP中,
23、OP2+ ,解得OP ,最后用面积的和差即可得出结论【详解】解:(1)P是半径OB上一动点,Q是 上的一动点,当PQ取最大时,点Q与点A重合,点P与点B重合,此时,POQ90,PQ , 故答案为:90,10 ;(2)解:如图,连接OQ,点P是OB的中点,OPOB OQQPOB,OPQ90在RtOPQ中,cosQOP ,QOP60,lBQ ;(3)由折叠的性质可得, ,在RtBOP中,OP2+ ,解得OP,S阴影S扇形AOB2SAOP.【点睛】此题是圆的综合题,主要考查了圆的性质,弧长公式,扇形的面积公式,熟记公式是解本题的关键19、(1)见解析;(2) 【解析】(1)根据题意作出图形即可;(2
24、)由(1)知,PD=PD,根据余角的性质得到ADP=BPD,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD=2,根据三角函数的定义即可得到结论【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D,过P作DD的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD,PDPD,DPD=90,A=90,ADP+APD=APD+BPD=90,ADP=BPD,在ADP与BPD中,ADPBPD,AD=PB=4,AP= BDPB=ABAP=6AP=4,AP=2;PD=2,BD=2CD=BC- BD=4-2=2PD=PD,PDPD,DD=PD=2,PQ垂直平分DD
25、,连接Q D则DQ= DQQDD=QDDsinQDD=sinQDD=【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键20、 【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率详解:列表如下:红红白黑红(红,红)(白,红)(黑,红)红(红,红)(白,红)(黑,红)白(红,白)(红,白)(黑,白)黑(红,黑)(红,黑)(白,黑)所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)=点睛:此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有
26、可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比21、(1)证明见解析;(2). 【解析】(2)易证APD=B=C,从而可证到ABPPCD,即可得到,即ABCD=CPBP,由AB=AC即可得到ACCD=CPBP;(2)由PDAB可得APD=BAP,即可得到BAP=C,从而可证到BAPBCA,然后运用相似三角形的性质即可求出BP的长解:(1)AB=AC,B=CAPD=B,APD=B=CAPC=BAP+B,APC=APD+DPC,BAP=DPC,ABPPCD,ABCD=CPBPAB=AC,
27、ACCD=CPBP;(2)PDAB,APD=BAPAPD=C,BAP=CB=B,BAPBCA,AB=10,BC=12,BP=“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到BAP=C进而得到BAPBCA是解决第(2)小题的关键22、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(
28、2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,根据题意两不等式即可得到结论【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,解得,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200a)台,由题意得,30a+40(200a)7000,解得:a100,则最多应购进A种机器人100台【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键23、 (1) w10x2700x10000;(2) 即销售单价为35元时,该文具
29、每天的销售利润最大;(3) A方案利润更高.【解析】试题分析:(1)根据利润=(单价-进价)销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A、B中x的取值范围,然后分别求出A、B方案的最大利润,然后进行比较.【详解】解:(1)w(x20)(25010x250)10x2700x10000.(2)w10x2700x1000010(x35)22250当x35时,w有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A方案利润高,理由如下:A方案中:20x30,函数w10(x35)22250随x的增大而增大,当x=30时,w有
30、最大值,此时,最大值为2000元.B方案中:,解得x的取值范围为:45x49.45x49时,函数w10(x35)22250随x的增大而减小,当x=45时,w有最大值,此时,最大值为1250元.20001250,A方案利润更高24、 (1)c2;(2) x1=1,x2=1【解析】(1)根据抛物线与x轴有两个交点,b2-4ac0列不等式求解即可;(2)先求出抛物线的 对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答【详解】(1)解:抛物线与x轴有两个交点,b24ac0,即16+8c0,解得c2;(2)解:由y=2x2+4x+c得抛物线的对称轴为直线x=1,抛物线经过点(1,0),抛物线与x轴的另一个交点为(1,0),方程2x2+4x+c=0的根为x1=1,x2=1【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性