《江西省丰城四中2023年高三第二次诊断性检测数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江西省丰城四中2023年高三第二次诊断性检测数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数,是虚数单位,则下列结论正确的是AB的共轭复数为C的实部与虚部之和为1D在复平面内的对应点位于第一象限2以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月)变化
2、图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B4月份仅有三个城市居民消费价格指数超过102C四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D仅有天津市从年初开始居民消费价格指数的增长呈上升趋势3函数且的图象是( )ABCD4已知,分别为内角,的对边,的面积为,则( )AB4C5D5复数的虚部为( )ABC2D6点为的三条中线的交点,且,则的值为( )ABCD7若复数()是纯虚数,则复数在复平面内对应的点
3、位于( )A第一象限B第二象限C第三象限D第四象限8设集合,若,则的取值范围是( )ABCD9若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是( )A36 cm3B48 cm3C60 cm3D72 cm310已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D211对于函数,若满足,则称为函数的一对“线性对称点”若实数与和与为函数的两对“线性对称点”,则的最大值为( )ABCD12设直线过点,且与圆:相切于点,那么( )AB3CD1二、填空题:本题共4小题,每小题5分,共20分。13如图,在菱形ABCD中,AB=3,E,F分别为BC,CD上的点,若线段EF上
4、存在一点M,使得,则_,_(本题第1空2分,第2空3分)14在二项式的展开式中,的系数为_.15九章算术中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑中,平面,且,过点分别作于点,于点,连接,则三棱锥的体积的最大值为_16在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.18(12分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且(1)证明:直
5、线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长19(12分)已知数列an的各项均为正,Sn为数列an的前n项和,an2+2an4Sn+1(1)求an的通项公式;(2)设bn,求数列bn的前n项和20(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.21(12分)已知点,若点满足.()求点的轨迹方程; ()过点的直线与()中曲线相交于两点,为坐标原点, 求面积的最大值及此时直线的方程.22(10分)在直角坐标系中,圆的参数
6、方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算
7、则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2、D【解析】采用逐一验证法,根据图表,可得结果.【详解】A正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大B正确,从图表二可知,4月份只有北京市居民消费价格指数低于102C正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大D错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势故选:D【点睛】本题考查图表的认识,审清题意,细心观察,属基础题.3、B【解析】先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.
8、【详解】由题可知定义域为,是偶函数,关于轴对称,排除C,D.又,在必有零点,排除A.故选:B.【点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.4、D【解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.【详解】解:,即,即. ,则.,解得., 故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.5、D【解析】根据复数的除法运算,化简出,即可得出虚部.【详解】解:=,故虚部为-2.故选:D.【点睛】本题考查复数的除法运算和复数的概念.6、B【解
9、析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.7、B【解析】化简复数,由它是纯虚数,求得,从而确定对应的点的坐标【详解】是纯虚数,则,对应点为,在第二象限故选:B【点睛】本题考查复数的除法运算,考查复数的概念与几何意义本题属于基础题8、C【解析】由得出,利用集合的包含关系可得出实数的取值范围.【详解】,且,.因此,实数的取值范围是.故选:C.
10、【点睛】本题考查利用集合的包含关系求参数,考查计算能力,属于基础题.9、B【解析】试题分析:该几何体上面是长方体,下面是四棱柱;长方体的体积,四棱柱的底面是梯形,体积为,因此总的体积.考点:三视图和几何体的体积.10、D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.11、D【解析】根据已知有,可得,只需求出的最小值,根据,利用基本不等式,得到的最小值,即可得出结论.【详解】依题意知,与为函数的“线性对称点”,所以,故(当且仅当时取
11、等号).又与为函数的“线性对称点,所以,所以,从而的最大值为.故选:D.【点睛】本题以新定义为背景,考查指数函数的运算和图像性质、基本不等式,理解新定义含义,正确求出的表达式是解题的关键,属于中档题.12、B【解析】过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,半径.过点的直线与圆:相切于点,;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、 【解析】根据题意,设,则,所以,解得,所以,从而有 .14、60【解析】直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数
12、为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.15、【解析】由已知可得AEF、PEF均为直角三角形,且AF2,由基本不等式可得当AEEF2时,AEF的面积最大,然后由棱锥体积公式可求得体积最大值【详解】由PA平面ABC,得PABC,又ABBC,且PAABA,BC平面PAB,则BCAE,又PBAE,则AE平面PBC,于是AEEF,且AEPC,结合条件AFPC,得PC平面AEF,AEF、PEF均为直角三角形,由已知得AF2,而SAEF(AE2+EF2)AF22,当且仅当AEEF=2时,取“”,此时AEF的面积最大,三棱锥PAEF的体积的最大值为:VPAEF故答案为
13、【点睛】本题主要考查直线与平面垂直的判定,基本不等式的应用,同时考查了空间想象能力、计算能力和逻辑推理能力,属于中档题16、【解析】做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做 中点,的中点,连接 ,由题意知,则 设的外接圆圆心为,则在直线上且 设长方形的外接圆圆心为,则在上且.设外接球的球心为 在 中,由余弦定理可知,.在平面中,以 为坐标原点,以 所在直线为 轴,以过点垂直于 轴的直线为 轴,如图
14、建立坐标系,由题意知,在平面中且 设 ,则,因为,所以 解得.则 所以球的表面积为.故答案为: .【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求得,根据已知条件得到在恒成立,由此得到在恒成立,利用分离常数法求得的取值范围.(2)构造函数设,利用
15、求二阶导数的方法,结合恒成立,求得的取值范围,由此求得的最小值.【详解】(1)因为在上单调递增,所以在恒成立,即在恒成立,当时,上式成立,当,有,需,而,故综上,实数的取值范围是(2)设,则,令,在单调递增,也就是在单调递增,所以.当即时,不符合;当即时,符合当即时,根据零点存在定理,使,有时,在单调递减,时,在单调递增,成立,故只需即可,有,得,符合综上得,实数的最小值为【点睛】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于难题.18、(1)见解析; (2).【解析】(1)分斜率为0,斜率不存在,斜率不
16、为0三种情况讨论,设的方程为,可求解得到,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以所以椭圆的方程为由点在直线上,且知的斜率必定存在,当的斜率为0时,于是,到的距离为1,直线与圆相切当的斜率不为0时,设的方程为,与联立得,所以,从而而,故的方程为,而在上,故,从而,于是此时,到的距离为1,直线与圆相切综上,直线与圆相切(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1此时,点在椭圆的长轴端点,为不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,所以【点睛】本题考查了直线和椭圆综合,考
17、查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.19、(1)an2n+1;(2)2【解析】(1)根据题意求出首项,再由(an+12+2an+1)(an2+2an)4an+1,求得该数列为等差数列即可求得通项公式;(2)利用错位相减法进行数列求和.【详解】(1)an2+2an4Sn+1,a12+2a14S1+1,即,解得:a11或a11(舍),又an+12+2an+14Sn+1+1,(an+12+2an+1)(an2+2an)4an+1,整理得:(an+1an)(an+1+an)2(an+1+an),又数列an的各项均为正,an+1an2,数列an是首项
18、为1、公差为2的等差数列,数列an的通项公式an1+2(n1)2n+1;(2)由(1)可知bn,记数列bn的前n项和为Tn,则Tn15(2n+1),Tn15+(2n1)(2n+1),错位相减得:Tn1+2()(2n+1)1+2,Tn()2【点睛】此题考查求等差数列的基本量,根据递推关系判定等差数列,根据错位相减进行数列求和,关键在于熟记方法准确计算.20、(1);(2),理由见解析.【解析】(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值,进而可求得的值,由此可得出椭圆的方程;(2)设点的坐标为,求出直线的方程,求出点的坐标,由此计算出直线和的斜率,可计算出的值,进而可求得的值,即可得出
19、结论.【详解】(1)由题意可知,椭圆的上焦点为、,由椭圆的定义可得,可得,因此,所求椭圆的方程为;(2)设点的坐标为,则,得,直线的斜率为,所以,直线的方程为,联立,解得,即点,直线的斜率为,直线的斜率为,所以,因此,.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中定值问题的求解,考查计算能力,属于中等题.21、();()面积的最大值为,此时直线的方程为.【解析】(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【详解】解:()由定义法可得,点的轨迹为椭圆且,. 因此椭圆的方程为. ()设直线的方程为与椭圆交于点, ,
20、联立直线与椭圆的方程消去可得,即,. 面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【点睛】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.22、(1);(2)或【解析】(1)消去参数可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.