江苏省南京江浦高级中学2023年高三压轴卷数学试卷含解析.doc

上传人:茅**** 文档编号:88305164 上传时间:2023-04-25 格式:DOC 页数:21 大小:2.25MB
返回 下载 相关 举报
江苏省南京江浦高级中学2023年高三压轴卷数学试卷含解析.doc_第1页
第1页 / 共21页
江苏省南京江浦高级中学2023年高三压轴卷数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江苏省南京江浦高级中学2023年高三压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京江浦高级中学2023年高三压轴卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD2已知角的终边经过点,则的值是A1或B或C1或D或3设为虚数单位,则复数在复平面内对应的点位于( )A第一象限B第二象限

2、C第三象限D第四象限4如图,在矩形中的曲线分别是,的一部分,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()ABCD大小关系不能确定5已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )AB2C4D6ABCD7公元前世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的倍.当比赛开始后,若阿基里斯跑了米,此时乌龟便领先他米,当阿基里斯跑完下一个米时,乌龟先他米,当阿基里斯跑完下-个米时,乌龟先他米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里

3、斯和乌龟的距离恰好为米时,乌龟爬行的总距离为( )A米B米C米D米8已知定义在上的函数,若函数为偶函数,且对任意, ,都有,若,则实数的取值范围是( )ABCD9某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则( ).A,且B,且C,且D,且10已知数列的前项和为,且,则( )ABCD11已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD12甲乙两人有三个不同的学习小组, , 可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为( )A B C D二、填空题:本题共4小题,每小题5分,共20分。13已知集合U1,3,5,9,A1,3,9,B

4、1,9,则U(AB)_.14已知椭圆:的左,右焦点分别为,过的直线交椭圆于,两点,若,且的三边长,成等差数列,则的离心率为_.15平面区域的外接圆的方程是_.16设,若函数有大于零的极值点,则实数的取值范围是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.18(12分)已知三棱锥中,为等腰直角三角形,设点为中点,点为中点,点为上一点,且(1)证明:平面;(2)若,求直线与平面所成角的正弦值19(12分)已知函数(1)解不等式:;(2)求证:20(12分)已知数列中

5、,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项(1)证明:数列是等差数列; (2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有21(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.22(10分)已知椭圆过点且椭圆的左、右焦点与短轴的端点构成的四边形的面积为.(1)求椭圆C的标准方程:(2)设A是椭圆的左顶点,过右焦点F的直线,与椭圆交于P,Q,直线AP,AQ与直线 交于M,N,线段MN的中点为E.求证:;记,的面积分别为、,求证:为定值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要

6、求的。1、C【解析】求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.2、B【解析】根据三角函数的定义求得后可得结论【详解】由题意得点与原点间的距离当时,当时,综上可得的值是或故选B【点睛】利用三角函数的定义求一个角的三角函数值时需确定三个量:角的终边上任意一个异

7、于原点的点的横坐标x,纵坐标y,该点到原点的距离r,然后再根据三角函数的定义求解即可3、A【解析】利用复数的除法运算化简,求得对应的坐标,由此判断对应点所在象限.【详解】,对应的点的坐标为,位于第一象限.故选:A.【点睛】本小题主要考查复数除法运算,考查复数对应点所在象限,属于基础题.4、B【解析】先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为又,故故选B【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题5、C【解析】设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程

8、,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.6、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题7、D【解析】根据题意,是一个等比数列模型,设,由,解得,再求和.【详解】根据题意,这是一个等比数列模型,设,所以,解得,所以 .故选:D【点

9、睛】本题主要考查等比数列的实际应用,还考查了建模解模的能力,属于中档题.8、A【解析】根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意, ,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.9、D【解析】首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,.故选:D.【点睛】本题考查三视图和几何体

10、之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.10、C【解析】根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.11、B【解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【点睛】本题考查函数图象与不等式恒成立的关系,考查转

11、化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围12、A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】易得ABA1,3,9,则U(AB)514、【解析】设,根据勾股定理得出,而由椭圆的定义得出的周长为,有,便可求出和的关系,即可求得椭圆的离心率.【详解】解:由已知,的三边长,成等差数列,设,而,根据勾股定理有:,解得:,由椭圆定义知:的周长为,有,在直角中,由勾股定理,即:,离心率.故答案为:.【点睛】本

12、题考查椭圆的离心率以及椭圆的定义的应用,考查计算能力.15、【解析】作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、的值,即可得出所求圆的方程.【详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,因此,所求圆的方程为.故答案为:.【点睛】本题考查三角形外接圆方程的求解,同时也考查了一元二次不等式组所表示的平面区域的求作,考查数形结合思想以及运算求解能力,属于中等题.16、【解析】先求导数,求解导数为零的根,结合根的分布求解.【详

13、解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)a=-1,b=1;(2)-1.【解析】(1)对求导得,根据函数的图象在处的切线为,列出方程组,即可求出的值;(2)由(1)可得,根据对任意恒成立,等价于对任意恒成立,构造,求出的单调性,由,可得存在唯一的零点,使得,利用单调性可求出,即可求出的最大值.(1),.由题意知. (2)由(1)知:,对任意恒成立对任意恒成立对任意恒成立. 令,则.由于,所以在上单调递增. 又

14、,所以存在唯一的,使得,且当时,时,. 即在单调递减,在上单调递增.所以.又,即,. . , . 又因为对任意恒成立,又, . 点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18、 (1)证明见解析;(2) 【解析】(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、所在直线分别为、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可【详解】证明

15、:如图,连接交于点,连接,点为的中点,点为的中点,点为的重心,则,又平面,平面,平面;,可得,又,则以、所在直线分别为、轴建立空间直角坐标系,则, ,设平面的一个法向量为,由,取,得设直线与平面所成角为,则直线与平面所成角的正弦值为【点睛】本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记19、(1); (2)见解析.【解析】(1)代入得,分类讨论,解不等式即可;(2)利用绝对值不等式得性质,比较大小即可.【详解】(1)由于,于是原不等式化为,若,则,解得;若,则,解得;若,则,解得综上所述,不等式解集为(2)由已知条件

16、,对于,可得又,由于,所以又由于,于是所以【点睛】本题考查了绝对值不等式得求解和恒成立问题,考查了学生分类讨论,转化划归,数学运算能力,属于中档题.20、(1)见解析(2)(3)见解析【解析】(1)令可得,即得到,再利用通项公式和前n项和的关系求解, (2)由(1)知,设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,求得,再代入证明。【详解】(1)解:令可得,即所以时,可得,当时,所以显然当时,满足上式所以,所以数列是等差数列, (2)由(1)知,设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,而时,所以当时,.当时,对任意,都有,【点睛】本题

17、主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,21、 (1);(2)见解析【解析】(1)将转化为对任意恒成立,令,故只需,即可求出的值; (2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,故在上单调递增,又,所以当时,不符合题意;当时,令得,当时,;当时,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,所以,当时,;当时,所以在 单调递减,在上单调递增,所

18、以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,所以,使得,当时,;当时,即在上单调递减,在上单调递增,且所以, 即,所以,即【点睛】本题主要考查利用导数法求函数的最值及恒成立问题处理方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题22、(1);(2)证明见解析;证明见解析【解析】(1)解方程即可;(2)设直线,将点的坐标用表示,证明即可;分别用表示,的面积即可.【详解】(1)解之得:的标准方程为:(2), ,设直线代入椭圆方程:设,直线,直线, ,.,所以.【点睛】本题考查了直接法求椭圆的标准方程、直线与椭圆位置关系中的定值问题,在处理此类问题一般要涉及根与系数的关系,本题思路简单,但计算量比较大,是一道有一定难度的题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁