江苏省无锡市和桥区、张渚区达标名校2023年中考联考数学试题含解析.doc

上传人:茅**** 文档编号:88305162 上传时间:2023-04-25 格式:DOC 页数:20 大小:899KB
返回 下载 相关 举报
江苏省无锡市和桥区、张渚区达标名校2023年中考联考数学试题含解析.doc_第1页
第1页 / 共20页
江苏省无锡市和桥区、张渚区达标名校2023年中考联考数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《江苏省无锡市和桥区、张渚区达标名校2023年中考联考数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市和桥区、张渚区达标名校2023年中考联考数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A

2、5.3103B5.3104C5.3107D5.31082如图,将周长为8的ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )A8B10C12D163如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为A12B9C6D44如图,二次函数y=ax1+bx+c(a0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC则下列结论:abc0;9a+3b+c0;c1;关于x的方程ax1+bx+c=0(a0)有一个根为;抛物线上有两点P(x1,y1)和Q(x1,y1),若x11x1,且x1+x14

3、,则y1y1其中正确的结论有()A1个B3个C4个D5个57的相反数是( )A7B7CD6如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1027下列计算中正确的是()Ax2+x2=x4Bx6x3=x2C(x3)2=x6Dx-1=x8若3x3y,则下列不等式中一定成立的是 ( )ABCD9把四张形状大小完全相同的小长方形卡片(如图)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示则图中两块阴影部分周长和是( )ABCD10在实数,0,4中,最大的是()AB0CD4二、填空题(本大题共6个小题

4、,每小题3分,共18分)11已知直线与抛物线交于A,B两点,则_12如图,AB为O的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_13如图,在ABC中,BE平分ABC,DEBC,如果DE=2AD,AE=3,那么EC=_14从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是_15若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是_16当a0,b0时化简:_三、解答题(共8题,共72分)17(8分)观察下列等式:15+4=32;26+4=42;37+4=52;(1)按照上面的

5、规律,写出第个等式:_;(2)模仿上面的方法,写出下面等式的左边:_=502;(3)按照上面的规律,写出第n个等式,并证明其成立18(8分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?19(8分)解方程:120(8分)已知AB是O的直径,PB是O的切线,C是O上的点,ACOP,

6、M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f(1)求证:PC是O的切线;(2)设OP=AC,求CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围21(8分)问题提出(1)如图,在矩形ABCD中,AB=2AD,E为CD的中点,则AEB ACB(填“”“”“=”);问题探究(2)如图,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,APB最大?并说明理由;问题解决(3)如图,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米如果小刚的睛睛距离地面的高度E

7、F为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图中找到点P的位置,并计算此时小刚与大楼AD之间的距离22(10分)抛物线y=x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)23(12分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧

8、AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB24如图,在边长为1 个单位长度的小正方形网格中:(1)画出ABC 向上平移6 个单位长度,再向右平移5 个单位长度后的A1B1C1(2)以点B为位似中心,将ABC放大为原来的2倍,得到A2B2C2,请在网格中画出A2B2C2(3)求CC1C2的面积参考答案一、选择题(共10小题,每小题3分,共30分

9、)1、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).2、B【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案根据题意,将周长为8个单位的ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB

10、+BF+DF=1+AB+BC+1+AC=1故选C“点睛”本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键3、B【解析】点,是中点点坐标在双曲线上,代入可得点在直角边上,而直线边与轴垂直点的横坐标为-6又点在双曲线点坐标为从而,故选B4、D【解析】根据抛物线的图象与系数的关系即可求出答案【详解】解:由抛物线的开口可知:a0,由抛物线与y轴的交点可知:c0,由抛物线的对称轴可知:0,b0,abc0,故正确;令x=3,y0,9a+3b+c0,故正确;OA=OC1,c1,故正确;对称轴为直线x

11、=1,=1,b=4aOA=OC=c,当x=c时,y=0,ac1bc+c=0,acb+1=0,ac+4a+1=0,c=,设关于x的方程ax1+bx+c=0(a0)有一个根为x,xc=4,x=c+4=,故正确;x11x1,P、Q两点分布在对称轴的两侧,1x1(x11)=1x1x1+1=4(x1+x1)0,即x1到对称轴的距离小于x1到对称轴的距离,y1y1,故正确故选D【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定本题属于中等题型5、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解

12、】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.6、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.7、C【解析】根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A. x2+x2=2x2 ,故不正确; B. x6x3=x3 ,故不正确; C. (x3)2=x6 ,故正确; D. x1=,故不正确;故

13、选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.8、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A9、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键10、C【解析】根据实数的大小比较即可得到答案.【详解】解:16172

14、5,45,04,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x +x =- = ,xx= =-1”,将原代数式通分变形后代入数据即可得出结论.【详解】将代入到中得,整理得,.【点睛】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式12、1【解析】解:连接OC,AB为O的直径,ABCD,CE=DE=CD

15、=6=3,设O的半径为xcm,则OC=xcm,OE=OBBE=x1,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=1,O的半径为1,故答案为1【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键13、1【解析】由BE平分ABC,DEBC,易得BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案【详解】解:DEBC,DEB=CBE,BE平分ABC,ABE=CBE,ABE=DEB,BD=DE,DE=2AD,BD=2AD,DEBC,AD:DB=AE:EC,EC=2AE=23=1故答案为:1【点睛】此题考查了平行线分线段成比例

16、定理以及等腰三角形的判定与性质注意掌握线段的对应关系是解此题的关键14、【解析】根据概率的公式进行计算即可.【详解】从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.故答案为:.【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.15、1【解析】根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值【详解】点(a,b)在一次函数y=2x-1的图象上,b=2a-1,2a-b=1,4a-2b=6,4a-2b-1=6-1=1,故答案为:1【点睛】本题考查一次函数图象上点

17、的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答16、【解析】分析:按照二次根式的相关运算法则和性质进行计算即可.详解:,.故答案为:.点睛:熟记二次根式的以下性质是解答本题的关键:(1);(2)=.三、解答题(共8题,共72分)17、610+4=82 4852+4 【解析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明【详解】解:(1)由题目中的式子可得,第个等式:610+4=82,故答案为610+4=82;(2)由题意可得,4852+4=502,故答案为4852+4;(3

18、)第n个等式是:n(n+4)+4=(n+2)2,证明:n(n+4)+4=n2+4n+4=(n+2)2,n(n+4)+4=(n+2)2成立【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法18、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作

19、天,根据总费用=甲队每天所需费用工作时间+乙队每天所需费用工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是

20、:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式19、【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解.【详解】原方程变形为,方程两边同乘以(2x1),得2x51(2x1),解得 检验:把代入(2x1),(2x1)0,是原方程的解,原方程的【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.20、(1)详见解析;(2);(3)【解析】(1)连接OC,根据等腰三角形的性质得到A=OCA,由平行线的性质得到A=BOP,ACO=COP,等量代换得到COP=BOP,由切线的性质得到OB

21、P=90,根据全等三角形的性质即可得到结论;(2)过O作ODAC于D,根据相似三角形的性质得到CDOP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC=12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论【详解】(1)连接OC,OA=OC,A=OCA,ACOP,A=BOP,ACO=COP,COP=BOP,PB是O的切线,AB是O的直径,OBP=90,在POC与POB中,COPBOP,OCP=OBP=90,PC是O的切线;(2)过O作ODAC于D,ODC=OCP=90,CD=AC,DCO=COP,ODCPCO,CDOP

22、=OC2,OP=AC,AC=OP,CD=OP,OPOP=OC2,sinCPO=;(3)连接BC,AB是O的直径,ACBC,AC=9,AB=1,BC=12,当CMAB时,d=AM,f=BM,d+f=AM+BM=1,当M与B重合时,d=9,f=0,d+f=9,d+f的取值范围是:9d+f1【点睛】本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键21、(1);(2)当点P位于CD的中点时,APB最大,理由见解析;(3)4米【解析】(1)过点E作EFAB于点F,由矩形的性质和等腰三角形的判定得到:AEF是等腰直角三角形,

23、易证AEB=90,而ACB90,由此可以比较AEB与ACB的大小(2)假设P为CD的中点,作APB的外接圆O,则此时CD切O于P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE、BF;由AFB是EFB的外角,得AFBAEB,且AFB与APB均为O中弧AB所对的角,则AFB=APB,即可判断APB与AEB的大小关系,即可得点P位于何处时,APB最大;(3)过点E作CEDF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【

24、详解】解:(1)AEBACB,理由如下:如图1,过点E作EFAB于点F,在矩形ABCD中,AB=2AD,E为CD中点,四边形ADEF是正方形,AEF=45,同理,BEF=45,AEB=90而在直角ABC中,ABC=90,ACB90,AEBACB故答案为:;(2)当点P位于CD的中点时,APB最大,理由如下:假设P为CD的中点,如图2,作APB的外接圆O,则此时CD切O于点P,在CD上取任意异于P点的点E,连接AE,与O交于点F,连接BE,BF,AFB是EFB的外角,AFBAEB,AFB=APB,APBAEB,故点P位于CD的中点时,APB最大:(3)如图3,过点E作CEDF交AD于点C,作线段

25、AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,OA=CQ=BD+QBCD=BD+ABCD,BD=11.6米, AB=3米,CD=EF=1.6米,OA=11.6+31.6=13米,DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.22、(1)y=(x)2+

26、;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4,4v3)的坐标代入y=x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+

27、bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶点坐标为(,);(2)由题意B(5,0),A(4,4),直线OA的解析式为y=x,AB=7,抛物线的对称轴x=,P(,)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,QCOB,CQB=QBO=QBC,CQ=BC=OB=5,四边形BOQC是平行四边形,BO=BC,四边形BOQC是菱形,设Q(m,),OQ=OB=5,m2+()2=52,m=,点Q坐标为(,)或(,);如图2中,由题意点D在以B为圆心5为半径的B上运动,当A、D、B共线时,线段AD最小,设OD与BQ交于点HAB=7,BD=5,AD=2,D

28、(,),OH=HD,H(,),直线BH的解析式为y=x+,当y=时,x=0,Q(0,)【点睛】本题二次函数与一次函数的关系、几何动态问题、最值问题、作辅助圆解决问题,难度较大,需积极思考,灵活应对23、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180,再由APG+FPE=90得2APG+2FPE=180,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanP

29、AE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90,FPE=90OPE,PEF=H

30、EB=90OBP,FPE=FEP,AB是O的直径,APB=90,APG+FPE=90,2APG+2FPE=180,F+FPE+PEF=180,F+2FPE=1802APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF

31、=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90,APG=PEM,APG+OPA=ABP+BAP=90,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点24、(1)见解析 (2)见解析 (3) 9【解析】试题分析:(1)将ABC向上平移6个单位长度,再向右平移5个单位长度后的A1B1C1,如图所示;(2)以点B为位似中心,将ABC放大为原来的2倍,得到A2B2C2,如图所示试题解析:(1)根据题意画出图形,A1B1C1为所求三角形;(2)根据题意画出图形,A2B2C2为所求三角形考点:1.作图-位似变换,2. 作图-平移变换

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁