《江苏省无锡市锡山高级中学2023届中考考前最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省无锡市锡山高级中学2023届中考考前最后一卷数学试卷含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.7
2、5105 C1.375108 D1.3751092如图,若ABC内接于半径为R的O,且A60,连接OB、OC,则边BC的长为()ABCD3的绝对值是()ABC2D24如图,已知ABC中,ABC=45,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD5下列计算正确的是()Aa2a3=a5 B2a+a2=3a3 C(a3)3=a6 Da2a=26下列立体图形中,主视图是三角形的是( )ABCD7如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()ABCD8如图,ABCD的对角线AC、BD相
3、交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D229若A(4,y1),B(3,y2),C(1,y3)为二次函数yx24x+m的图象上的三点,则y1,y2,y3的大小关系是( )Ay1y2y3 By3y2y1 Cy3y1y2 Dy1y3y210钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形AD
4、EF的边长为 . 122018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有_万人13在平面直角坐标系xOy中,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为_14关于x的不等式组的整数解共有3个,则a的取值范围是_15对于函数,若x2,则y_3(填“”或“”)1
5、6若2x+y=2,则4x+1+2y的值是_17若点与点关于原点对称,则_三、解答题(共7小题,满分69分)18(10分)的除以20与18的差,商是多少?19(5分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?20(8分)如图,将
6、等边ABC绕点C顺时针旋转90得到EFC,ACE的平分线CD交EF于点D,连接AD、AF求CFA度数;求证:ADBC21(10分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若A=30,AB=2,则ABD的面积为 22(10分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费(I)根据题意,填写下表:月用水量(吨/户)41016应收水费(元/户) 40 (II)设一户居民的月用水量为x
7、吨,应收水费y元,写出y关于x的函数关系式;(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?23(12分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k0)的图象经过点B求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积24(14分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形AB
8、CD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】用科学记数法表示较大的数时,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.2、D【解析】延长BO交圆于D,连接CD,则BCD=90,D=A=60;又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交O于D,连接CD,则BCD=90,D=A=60,CBD=30
9、,BD=2R,DC=R,BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.3、B【解析】根据求绝对值的法则,直接计算即可解答【详解】,故选:B【点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键4、B【解析】求出ADBD,根据FBDC90,CADC90,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90,EAF+AFE=90,FBD+BFD=90,AFE=BFD,EAF=FBD,ADB=90,ABC=45,BAD=45
10、=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件5、A【解析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案【详解】A、a2a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2a=a,故此选项错误;故选A【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键6、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的
11、主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看7、D【解析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.8、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB
12、=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解9、B【解析】根据函数解析式的特点,其对称轴为x=2,A(4,y1),B(3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3y2y1.【详解】抛物线y=x24x+m的对称轴为x=2,当x2时,y随着x的增大而减小,因为-4-312,所以y3y2y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练
13、掌握二次函数的增减性是解题的关键.10、A【解析】根据轴对称图形的概念求解解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A“点睛”本题考查了轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合二、填空题(共7小题,每小题3分,满分21分)11、2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,反比例函数的解析式为;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),点E在抛物线上,整理得,解得或(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义12、1【解析
14、】分析:用总人数乘以样本中出境游东南亚地区的百分比即可得详解:出境游东南亚地区的游客约有700(116%15%11%13%)=70045%=1(万)故答案为1点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用13、(,0)【解析】试题解析:过点B作BDx轴于点D,ACO+BCD=90, OAC+ACO=90,OAC=BCD,在ACO与BCD中, ,ACOBCD(AAS)OC=BD,OA=CD,A(0,2),C(1,0)OD=3,BD=1,B(3,1),设反比例函数的解析式为y=,将B(3,1)代入y=,k=3,y=,把y=2代入y=,
15、x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故答案为(,0).14、【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解:由不等式得:xa,由不等式得:x1,所以不等式组的解集是ax1关于x的不等式组的整数解共有3个,3个整数解为0,1,2,a的取值范围是3a2故答案为:3a2【点睛】本题考查了不等式组的解法及整数解的确定求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了15、【解
16、析】根据反比例函数的性质即可解答.【详解】当x2时,k6时,y随x的增大而减小x2时,y3故答案为:【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围 .16、1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案详解:原式=2(2x+y)+1=22+1=1点睛:本题主要考查的是整体思想求解,属于基础题型找到整体是解题的关键17、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为1三、解答题(共7小题,满分69分)18、【解析】根据题
17、意可用乘的积除以20与18的差,所得的商就是所求的数,列式解答即可【详解】解:(2018)【点睛】考查有理数的混合运算,列出式子是解题的关键.19、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得
18、x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一
19、次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程20、(1)75(2)见解析【解析】(1)由等边三角形的性质可得ACB60,BCAC,由旋转的性质可得CFBC,BCF90,由等腰三角形的性质可求解;(2)由“SAS”可证ECDACD,可得DACE60ACB,即可证ADBC【详解】解:(1)ABC是等边三角形ACB60,BCAC等边ABC绕点C顺时针旋转90得到EFCCFBC,BCF90,ACCECFACBCF90,ACB60ACFBCFACB30CFA(180ACF)75(2)ABC和EFC是等边三角形ACB60,E60CD平分ACEACDE
20、CDACDECD,CDCD,CACE,ECDACD(SAS)DACE60DACACBADBC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键21、(1)见解析(2) 【解析】(1)分别作ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到ABD=30,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解【详解】解:(1)如图,点D为所作;(2)CAB=30,ABC=60BD为角平分线,ABD=30DAAB,DAB=90在RtABD中,AD=AB=,ABD的面积=2=故答案为【点睛】
21、本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了三角形面积公式22、()16;66;()当x15时,y=4x;当x15时,y=6x30;()居民甲上月用水量为18吨,居民乙用水12吨【解析】()根据题意计算即可;()根据分段函数解答即可;()根据题意,可以分段利用方程或方程组解决用水量问题【详解】解:()当月用水量为4吨时,应收水费=44=16元;当月用水量为16吨时,应收水费=154+16=66元;故答案为16;66;()当x1
22、5时,y=4x;当x15时,y=154+(x15)6=6x30;()设居民甲上月用水量为X吨,居民乙用水(X6)吨由题意:X615且X15时,4(X6)+154+(X15)6=126X=18,居民甲上月用水量为18吨,居民乙用水12吨【点睛】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题注意在实际问题中,利用方程或方程组是解决问题的常用方法23、(1)y=;(2)1;【解析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行
23、四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=; (2)B(3,4),C(m,0),边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=94=1【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键24、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF
24、,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90=60,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=