江苏省南通市重点名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc

上传人:茅**** 文档编号:88304960 上传时间:2023-04-25 格式:DOC 页数:18 大小:694KB
返回 下载 相关 举报
江苏省南通市重点名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第1页
第1页 / 共18页
江苏省南通市重点名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省南通市重点名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南通市重点名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx52对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点3据悉,

2、超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.31084估计+1的值在()A2和3之间B3和4之间C4和5之间D5和6之间5计算(ab2)3的结果是()A3ab2Ba3b6Ca3b5Da3b66如图,四边形ABCD是菱形,对角线AC,BD交于点O,于点H,且DH与AC交于G,则OG长度为ABCD7若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx18如图,在ABCD中,DAB的平分线交CD于点E,交BC的延长线于点G,ABC的平分线

3、交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()ABO=OH BDF=CE CDH=CG DAB=AE9如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=10如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC的位置,此时露在水面上的鱼线BC为m,则鱼竿转过的角度是()A60B45C15D90二、填空题(本大题共6个小题,每小题3分,共18分)11函数的定义域是_12在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高

4、度为_m13若代数式x26x+b可化为(x+a)25,则a+b的值为_14计算3结果等于_15如图,在ABCD中,AC与BD交于点M,点F在AD上,AF6cm,BF12cm,FBMCBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动点P运动到F点时停止运动,点Q也同时停止运动当点P运动_秒时,以点P、Q、E、F为顶点的四边形是平行四边形16已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 , 两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _三、解答题(共8题,共72分)17(8分)如图,在

5、ABC中,D为BC边上一点,AC=DC,E为AB边的中点,(1)尺规作图:作C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连接EF,若BD=4,求EF的长18(8分)(问题情境)张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在ABC中,ABAC,点P为边BC上任一点,过点P作PDAB,PEAC,垂足分别为D,E,过点C作CFAB,垂足为F,求证:PD+PECF小军的证明思路是:如图2,连接AP,由ABP与ACP面积之和等于ABC的面积可以证得:PD+PECF小俊的证明思路是:如图2,过点P作PGCF,垂足为G,可以证得:PDGF,PECG,则PD+PECF变式探究如图

6、3,当点P在BC延长线上时,其余条件不变,求证:PDPECF;请运用上述解答中所积累的经验和方法完成下列两题:结论运用如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C处,点P为折痕EF上的任一点,过点P作PGBE、PHBC,垂足分别为G、H,若AD8,CF3,求PG+PH的值;迁移拓展图5是一个航模的截面示意图在四边形ABCD中,E为AB边上的一点,EDAD,ECCB,垂足分别为D、C,且ADCEDEBC,AB2dm,AD3dm,BDdmM、N分别为AE、BE的中点,连接DM、CN,求DEM与CEN的周长之和19(8分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1

7、,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?20(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸

8、出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率21(8分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DEAM于点E求证:ADEMAB;求DE的长22(10分)先化简,再求代数式()的值,其中x=sin60,y=tan3023(12分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,

9、求这2人做义工时间都在 中的概率24某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有_人,在扇形统计图中,“乒乓球”的百分比为_%,如果学校有800名学生,估计全校学生中有_人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率参考答案一、选择题(共10

10、小题,每小题3分,共30分)1、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式2、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C

11、错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).4、B【解析】分析:直接利用23,进而得出答案详解:23,3+14,故选B点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键5、D【解析】根据积的乘方与幂的乘方计算可

12、得【详解】解:(ab2)3=a3b6,故选D【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则6、B【解析】试题解析:在菱形中,所以,在中,因为,所以,则,在中,由勾股定理得,由可得,即,所以故选B.7、D【解析】试题解析:由题意可知:x-10,x1故选D.8、D【解析】解:四边形ABCD是平行四边形,AHBG,AD=BC,H=HBGHBG=HBA,H=HBA,AH=AB同理可证BG=AB,AH=BGAD=BC,DH=CG,故C正确AH=AB,OAH=OAB,OH=OB,故A正确DFAB,DFH=ABHH=ABH,H=DFH,DF=DH同理可证EC=CGDH=

13、CG,DF=CE,故B正确无法证明AE=AB,故选D9、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C10、C【解析】试题解析:sinCAB=CAB=45,CAB=60CAC=60-45=15,鱼竿转过的角度是15故选C考点:解直角三角形的应用二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据二次根式的性质,被开方数大于等于0,可知:x-10,解得x的范围【详解】根据题意得:x-10,解得:x1故答案为:.【点睛】此题考查二次根式,解题关键在于掌握二次根式有意义的条件.12、13【解析】根据同时同地物高

14、与影长成比列式计算即可得解【详解】解:设旗杆高度为x米,由题意得,,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.13、1【解析】根据题意找到等量关系x26x+b=(x+a)25,根据系数相等求出a,b,即可解题.【详解】解:由题可知x26x+b=(x+a)25,整理得:x26x+b= x2+2ax+a2-5,即-6=2a,b= a2-5,解得:a=-3,b=4,a+b=1.【点睛】本题考查了配方法的实际应用,属于简单题,找到等量关系求出a,b是解题关键.14、1【解析】根据二次根式的乘法法则进行计算即可.【详解】 故答案为:1【点睛】考查二次根式的乘法,掌握二

15、次根式乘法的运算法则是解题的关键.15、3或1【解析】由四边形ABCD是平行四边形得出:ADBC,AD=BC,ADB=CBD,又由FBM=CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果【详解】解:四边形ABCD是平行四边形,ADBC,AD=BC,ADB=CBD,FBM=CBM,FBD=FDB,FB=FD=12cm,AF=6cm,AD=18cm,点E是BC的中点,CE=BC=AD=9cm,要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,设当点P运动t秒时,点P、Q、E、

16、F为顶点的四边形是平行四边形,根据题意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1故答案为3或1【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识注意掌握分类讨论思想的应用是解此题的关键16、或x=-1【解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x=2或x=-1故答案为x=2或x=-1【点睛】本题考查了抛物线与x轴的交点以及二次函数

17、的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键三、解答题(共8题,共72分)17、 (1)见解析;(1)1【解析】(1)根据角平分线的作图可得;(1)由等腰三角形的三线合一,结合E为AB边的中点证EF为ABD的中位线可得【详解】(1)如图,射线CF即为所求;(1)CAD=CDA,AC=DC,即CAD为等腰三角形;又CF是顶角ACD的平分线,CF是底边AD的中线,即F为AD的中点,E是AB的中点,EF为ABD的中位线,EF=BD=1【点睛】本题主要考查作图-基本作图和等腰三角形的性质、中位线定理,熟练掌握等腰三角形的性质、中位线定理是解题的关键18、小军的证明:见解析;小俊的证明

18、:见解析;变式探究见解析;结论运用PG+PH的值为1;迁移拓展(6+2)dm【解析】小军的证明:连接AP,利用面积法即可证得;小俊的证明:过点P作PGCF,先证明四边形PDFG为矩形,再证明PGCCEP,即可得到答案;变式探究小军的证明思路:连接AP,根据SABCSABPSACP,即可得到答案;小俊的证明思路:过点C,作CGDP,先证明四边形CFDG是矩形,再证明CGPCEP即可得到答案;结论运用 过点E作EQBC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BEBF即可得到答案;迁移拓展延长AD,BC交于点F,作BHAF,证明ADEBCE得到FA=FB

19、,设DHx,利用勾股定理求出x得到BH6,再根据ADEBCE90,且M,N分别为AE,BE的中点即可得到答案.【详解】小军的证明:连接AP,如图PDAB,PEAC,CFAB,SABCSABP+SACP,ABCFABPD+ACPE,ABAC,CFPD+PE小俊的证明:过点P作PGCF,如图2,PDAB,CFAB,PGFC,CFDFDGFGP90,四边形PDFG为矩形,DPFG,DPG90,CGP90,PEAC,CEP90,PGCCEP,BDPDPG90,PGAB,GPCB,ABAC,BACB,GPCECP,在PGC和CEP中, PGCCEP,CGPE,CFCG+FGPE+PD;变式探究小军的证明

20、思路:连接AP,如图,PDAB,PEAC,CFAB,SABCSABPSACP,ABCFABPDACPE,ABAC,CFPDPE;小俊的证明思路:过点C,作CGDP,如图,PDAB,CFAB,CGDP,CFDFDGDGC90,CFGD,DGC90,四边形CFDG是矩形,PEAC,CEP90,CGPCEP,CGDP,ABDP,CGPBDP90,CGAB,GCPB,ABAC,BACB,ACBPCE,GCPECP,在CGP和CEP中, CGPCEP,PGPE,CFDGDPPGDPPE结论运用如图过点E作EQBC,四边形ABCD是矩形,ADBC,CADC90,AD8,CF3,BFBCCFADCF5,由折

21、叠得DFBF,BEFDEF,DF5,C90,DC1, EQBC,CADC90,EQC90CADC,四边形EQCD是矩形,EQDC1,ADBC,DEFEFB,BEFDEF,BEFEFB,BEBF,由问题情景中的结论可得:PG+PHEQ,PG+PH1PG+PH的值为1迁移拓展延长AD,BC交于点F,作BHAF,如图,ADCEDEBC, EDAD,ECCB,ADEBCE90,ADEBCE,ACBE,FAFB,由问题情景中的结论可得:ED+ECBH,设DHx,AHAD+DH3+x,BHAF,BHA90,BH2BD2DH2AB2AH2,AB2,AD3,BD,()2x2(2)2(3+x)2, x1,BH2

22、BD2DH237136,BH6,ED+EC6,ADEBCE90,且M,N分别为AE,BE的中点,DMEMAE,CNENBE, DEM与CEN的周长之和DE+DM+EM+CN+EN+ECDE+AE+BE+ECDE+AB+ECDE+EC+AB6+2,DEM与CEN的周长之和(6+2)dm【点睛】此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.19、(1)m8,反比例函数的表达式为y;(2)当n3时,BMN的面积最大【解析】(1)求出点A的坐标,利用待定系

23、数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)直线y=2x+6经过点A(1,m),m=21+6=8,A(1,8),反比例函数经过点A(1,8),8=,k=8,反比例函数的解析式为y=(2)由题意,点M,N的坐标为M(,n),N(,n),0n6,0,SBMN=(|+|)n=(+)n=(n3)2+,n=3时,BMN的面积最大20、(1)(2)【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率【详解】解:(1

24、)确定小亮打第一场,再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为【点睛】本题主要考查了列表法与树状图法;概率公式21、(1)证明见解析;(2). 【解析】试题分析:利用矩形角相等的性质证明DAEAMB.试题解析:(1)证明:四边形ABCD是矩形,ADBC,DAE=AMB,又DEA=B=90,DAEAMB.(2)由(1)知DAEAMB,DE:AD=AB:AM,M是边BC的中点,BC=6,BM=3,又AB=4,B=90,AM=5,DE:6=4

25、:5,DE=22、【解析】先根据分式混合运算的法则把原式进行化简,再计算x和y的值并代入进行计算即可【详解】原式 原式【点睛】考查分式的混合运算,掌握运算顺序是解题的关键.23、(1)5;(2)36%;(3).【解析】试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;(2)根据:小组频数= ,进行求解即可;(3)利用列举法求概率即可.试题解析:(1)E类:50-2-3-22-185(人),故答案为:5;补图如下:(2)D类:1850100%36%,故答案为:36%;(3)设这5人为 有以下10种情况: 其中,两人都在 的概率是: .24、

26、(1)5,20,80;(2)图见解析;(3).【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为2040%=50(人),喜欢篮球项目的同学的人数=50201015=5(人);(2)“乒乓球”的百分比=20%;(3)800=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁