江苏省苏州五中2023届高三压轴卷数学试卷含解析.doc

上传人:茅**** 文档编号:88304884 上传时间:2023-04-25 格式:DOC 页数:21 大小:1.93MB
返回 下载 相关 举报
江苏省苏州五中2023届高三压轴卷数学试卷含解析.doc_第1页
第1页 / 共21页
江苏省苏州五中2023届高三压轴卷数学试卷含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《江苏省苏州五中2023届高三压轴卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省苏州五中2023届高三压轴卷数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则 ()ABCD2设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD3设复数满足为虚数单位),则( )ABCD4将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对

2、称,则的最小值为( )ABCD5阿基米德(公元前287年公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( )ABCD6秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的数书九章中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法如图的程序框图给出

3、了利用秦九韶算法求某多项式值的一个实例,若输入的值为2,则输出的值为ABCD7函数的图象在点处的切线为,则在轴上的截距为( )ABCD8已知函数,给出下列四个结论:函数的值域是;函数为奇函数;函数在区间单调递减;若对任意,都有成立,则的最小值为;其中正确结论的个数是( )ABCD9双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为( )A3BC6D10若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是( )A1B-3C1或D-3或11已知正方体的棱长为1,平面与此正方体相交.对于实数,如果正方体的八个顶点中恰好有个点到平面的距离等于,那么下列结论中,一定正确的是

4、ABCD12函数f(x)sin(wx)(w0,)的最小正周期是,若将该函数的图象向右平移个单位后得到的函数图象关于直线x对称,则函数f(x)的解析式为( )Af(x)sin(2x)Bf(x)sin(2x)Cf(x)sin(2x)Df(x)sin(2x)二、填空题:本题共4小题,每小题5分,共20分。13已知数列满足对任意,若,则数列的通项公式_14将含有甲、乙、丙的6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.15已知正项等比数列中,则_16设实数,若函数的最大值为,则实数的最大值为_.三、解答题:共

5、70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱中,底面是等边三角形,侧面是矩形,是的中点,是棱上的点,且.(1)证明:平面;(2)若,求二面角的余弦值.18(12分)已知某种细菌的适宜生长温度为1227,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:)变化的规律,收集数据如下:温度/14161820222426繁殖数量/个2530385066120218对数据进行初步处理后,得到了一些统计量的值,如表所示:20784.11123.8159020.5其中,.(1)请绘出关于的散点图,并根据散点图判断与哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出

6、判断即可,不必说明理由);(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);(3)当温度为27时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为,参考数据:.19(12分)甲、乙两班各派三名同学参加知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是,乙班三名同学答对的概率分别是,且这六名同学答题正确与否相互之间没有影响(1)记“甲、乙两班总得分之和是60分”为事件,求事件发生的概率;(2)用表示甲班总得分,求随机变量的概率分布和数学期望20(12分)从抛物线C:()外一点作该抛物

7、线的两条切线PA、PB(切点分别为A、B),分别与x轴相交于C、D,若AB与y轴相交于点Q,点在抛物线C上,且(F为抛物线的焦点).(1)求抛物线C的方程;(2)求证:四边形是平行四边形.四边形能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.21(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值22(10分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.参考答案一、选择题:本题共1

8、2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用诱导公式以及同角三角函数基本关系式化简求解即可【详解】,本题正确选项:【点睛】本题考查诱导公式的应用,同角三角函数基本关系式的应用,考查计算能力2、B【解析】画出函数图像,根据图像知:,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.3、B【解析】易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能

9、力,是一道容易题.4、B【解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.5、C【解析】设球的半径为R,根据组合体的关系,圆柱的表面积为,解得球的半径,再代入球的体积公式求解.【详解】设球的半径为R,根据题意圆柱的表面积为,解得,所以该球的体积为 .故选:C【点睛】本题主要考查组合体的表面积和体积,还考查了对数学史了解,属于基础题.6、C【解析】由题意,模拟程序的运行

10、,依次写出每次循环得到的,的值,当时,不满足条件,跳出循环,输出的值【详解】解:初始值,程序运行过程如下表所示:,跳出循环,输出的值为其中得故选:【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到,的值是解题的关键,属于基础题7、A【解析】求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.8、C【解析】化的解析式为可判断,求出的解析式可判断,由得,结合正弦函数得

11、图象即可判断,由得可判断.【详解】由题意,所以,故正确;为偶函数,故错误;当时,单调递减,故正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.9、A【解析】根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.10、D【解析】由题得,解方程即得k

12、的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2) 点到直线的距离.11、B【解析】此题画出正方体模型即可快速判断m的取值.【详解】如图(1)恰好有3个点到平面的距离为;如图(2)恰好有4个点到平面的距离为;如图(3)恰好有6个点到平面的距离为.所以本题答案为B.【点睛】本题以空间几何体为载体考查点,面的位置关系,考查空间想象能力,考查了学生灵活应用知识分析解决问题的能力和知识方法的迁移能力,属于难题.12、D【解析】由函数的周期求得,再由平移后的函数图像关于直线对称,得到 ,由此求得满足条

13、件的的值,即可求得答案.【详解】分析:由函数的周期求得,再由平移后的函数图像关于直线对称,得到,由此求得满足条件的的值,即可求得答案.详解:因为函数的最小正周期是,所以,解得,所以,将该函数的图像向右平移个单位后,得到图像所对应的函数解析式为,由此函数图像关于直线对称,得:,即,取,得,满足,所以函数的解析式为,故选D.【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由可得,利用等比数列的通项公式可得,再利用累加法

14、求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化为等比数列是解题的关键,利用累加法求通项公式,属于中档题.14、【解析】先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件数,然后根据古典概型求解【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查

15、概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.15、【解析】利用等比数列的通项公式将已知两式作商,可得,再利用等比数列的性质可得,再利用等比数列的通项公式即可求解.【详解】由,所以,解得.,所以,所以.故答案为:【点睛】本题考查了等比数列的通项公式以及等比中项,需熟记公式,属于基础题.16、【解析】根据,则当时,即.当时,显然成立;当时,由,转化为,令,用导数法求其最大值即可.【详解】因为,又当时,即.当时,显然成立;当时,由等价于,令,当时,单调递增,当时,单调递减,则,又,得,因此的最大值为.故答案为:【点睛】本题主要考查导数在函数中的应用,还考查了转化化归的思

16、想和运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】(1)连结BM,推导出BCBB1,AA1BC,从而AA1MC,进而AA1平面BCM,AA1MB,推导出四边形AMNP是平行四边形,从而MNAP,由此能证明MN平面ABC(2)推导出ABA1是等腰直角三角形,设AB,则AA12a,BMAMa,推导出MCBM,MCAA1,BMAA1,以M为坐标原点,MA1,MB,MC为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角ACMN的余弦值【详解】(1)如图1,在三棱柱中,连结,因为是矩形,所以,因为,所以, 又因为,所以平

17、面,所以,又因为,所以是中点,取中点,连结,因为是的中点,则且, 所以且,所以四边形是平行四边形,所以,又因为平面,平面,所以平面.(图1) (图2)(2)因为,所以是等腰直角三角形,设,则,.在中,所以.在中,所以,由(1)知,则,如图2,以为坐标原点,的方向分别为轴,轴,轴的正方向建立空间直角坐标系,则,.所以,则,设平面的法向量为,则即取得.故平面的一个法向量为,因为平面的一个法向量为,则.因为二面角为钝角,所以二面角的余弦值为.【点睛】本题考查线面平行的证明,考查了利用空间向量法求解二面角的方法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题18、(1)作

18、图见解析;更适合(2)(3)预报值为245【解析】(1)由散点图即可得到答案;(2)把两边取自然对数,得,由 计算得到,再将代入可得,最终求得,即;(3)将代入中计算即可.【详解】解:(1)绘出关于的散点图,如图所示:由散点图可知,更适合作为该种细菌的繁殖数量关于的回归方程类型;(2)把两边取自然对数,得,即,由.,则关于的回归方程为;(3)当时,计算可得;即温度为27时,该种细菌的繁殖数量的预报值为245.【点睛】本题考查求非线性回归方程及其应用的问题,考查学生数据处理能力及运算能力,是一道中档题.19、(1)(2)分布列见解析,期望为20【解析】利用相互独立事件概率公式求解即可;由题意知,

19、随机变量可能的取值为0,10,20,30,分别求出对应的概率,列出分布列并代入数学期望公式求解即可.【详解】(1)由相互独立事件概率公式可得, (2)由题意知,随机变量可能的取值为0,10,20,30.,,所以,的概率分布列为0102030所以数学期望.【点睛】本题考查相互独立事件概率公式和离散型随机变量的分布列及其数学期望;考查运算求解能力;确定随机变量可能的取值,求出对应的概率是求解本题的关键;属于中档题、常考题型.20、(1);(2)证明见解析;能,.【解析】(1)根据抛物线的定义,求出,即可求抛物线C的方程;(2)设,写出切线的方程,解方程组求出点的坐标. 设点,直线AB的方程,代入抛

20、物线方程,利用韦达定理得到点的坐标,写出点的坐标,可得线段相互平分,即证四边形是平行四边形;若四边形为矩形,则,求出,即得点Q的坐标.【详解】(1)因为,所以,即抛物线C的方程是. (2)证明:由得,.设, 则直线PA的方程为(),则直线PB的方程为(),由()和()解得:,所以.设点,则直线AB的方程为.由得,则,所以,所以线段PQ被x轴平分,即被线段CD平分.在中,令解得,所以,同理得,所以线段CD的中点坐标为,即,又因为直线PQ的方程为,所以线段CD的中点在直线PQ上,即线段CD被线段PQ平分.因此,四边形是平行四边形.由知,四边形是平行四边形.若四边形是矩形,则,即,解得,故当点Q为,

21、即为抛物线的焦点时,四边形是矩形.【点睛】本题考查抛物线的方程,考查直线和抛物线的位置关系,属于难题.21、(1);(2).【解析】(1)在已知极坐标方程两边同时乘以后,利用cosx,siny,2x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x24y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得【详解】解:(1)在+cos28sin中两边同时乘以得2+2(cos2sin2)8sin,x2+y2+x2y28y,即x24y,所以曲线C的直角坐标方程为:x24y(2)联立直线l的参数方程与x24y得:(cos)2t24(sin)t+40,设A,B两点对应的参数分别为t1,t2,由16sin216cos20,得sin,t1+t2,由|PM|,所以20sin2+9sin200,解得sin或sin(舍去),所以sin【点睛】本题考查了简单曲线的极坐标方程,属中档题22、(1)(2)【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.,.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能力,化归与转化思想.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁