《江苏省常州市七校联考2023年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省常州市七校联考2023年中考五模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3
2、,3)2下列图形中,不是轴对称图形的是()ABCD3抛物线yx22x3的对称轴是( )A直线x1B直线x1C直线x2D直线x24如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D45把不等式组的解集表示在数轴上,下列选项正确的是()ABCD6为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户)1234月用电量(度/户)3042
3、5051那么关于这10户居民月用电量(单位:度),下列说法错误的是()A中位数是50B众数是51C方差是42D极差是217cos30=( )ABCD8已知一个多边形的内角和是1080,则这个多边形是( )A五边形B六边形C七边形D八边形9下列说法不正确的是( )A某种彩票中奖的概率是,买1000张该种彩票一定会中奖B了解一批电视机的使用寿命适合用抽样调查C若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件10如图,是的直径,弦,则阴影部分的面积为( )A2BCD11下列计算正确的是()AB(a2)3=
4、a6CD6a22a=12a312在RtABC中,C90,如果AC4,BC3,那么A的正切值为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13与是位似图形,且对应面积比为4:9,则与的位似比为_14如图,在菱形纸片中,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为_15我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_.16某航班每次飞行约有111名乘客,若飞机失事的概率为p=1111 15,一家保险公司
5、要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币 平均来说,保险公司应向每位乘客至少收取_元保险费才能保证不亏本17用科学计数器计算:2sin15cos15= _(结果精确到0.01).18因式分解:x210x+24=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型 目
6、的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用20(6分)如图,矩形ABCD中,点E为BC上一点,DFAE于点F,求证:AEBCDF.21(6分)计算:(1)22(8分)已知关于x的一元二次方程x2(2m+3)x+m2+21(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2
7、,且满足x12+x2231+|x1x2|,求实数m的值23(8分)如图1,已知DAC=90,ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60得到线段CQ,连结QB并延长交直线AD于点E(1)如图1,猜想QEP= ;(2)如图2,3,若当DAC是锐角或钝角时,其它条件不变,猜想QEP的度数,选取一种情况加以证明;(3)如图3,若DAC=135,ACP=15,且AC=4,求BQ的长24(10分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32的方向上,向东走过780米后到达B处,测得海岛在南偏西37的方向,求小岛到海
8、岸线的距离(参考数据:tan37=cot530.755,cot37=tan531.327,tan32=cot580.625,cot32=tan581.1)25(10分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件求原计划每天生产的零件个数和规定的天数为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数26(12
9、分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?27(12分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m0)的图象交于点A(
10、3,1),且过点B(0,2)(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且ABP的面积是3,求点P的坐标参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故
11、此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键2、A【解析】观察四个选项图形,根据轴对称图形的概念即可得出结论【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形故选A【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合3、B【解析】根据抛物线的对称轴公式:计算即可【详解】解:抛物线yx22x3的对称轴是直线故选B【点睛】此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题
12、的关键4、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和CDA中,AOB=ADC=90,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题5、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为
13、x1故选C【点睛】本题考查了不等式问题,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示6、C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2=42.1故选C考点:1.方差;2.中位数;3.众数;4.极差7、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:
14、特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.8、D【解析】根据多边形的内角和=(n2)180,列方程可求解.【详解】设所求多边形边数为n,(n2)1801080,解得n8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.9、A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C
15、、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确故选A考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件10、D【解析】分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可详解:连接OD,CDAB, (垂径定理),故 即可得阴影部分的面积等于扇形OBD的面积,又 (圆周角定理),OC=2,故S扇形OBD= 即阴影部分的面积为.故选D.点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.11、D【解析】根据平方根的运算法则
16、和幂的运算法则进行计算,选出正确答案.【详解】,A选项错误;(a2)3=- a6,B错误;,C错误;. 6a22a=12a3 ,D正确;故选:D.【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.12、A【解析】根据锐角三角函数的定义求出即可.【详解】解:在RtABC中,C=90,AC=4,BC=3, tanA=.故选A.【点睛】本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、2:1【解析】由相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图
17、形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方14、【解析】过点作,交延长线于,连接,交于,根据折叠的性质可得,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,四边形是菱形,将菱形纸片翻折,使点落在的中点处,折痕为,为中点,.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变
18、,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.15、【解析】分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.详解:由勾股定理得:= ,即(0,4).矩形ABCD的边AB在x轴上,四边形是平行四边形,A=B, =AB=4-(-3)=7, 与的纵坐标相等,(7,4),故答案为(7,4).点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.16、21【解析】每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的
19、钱数为411111111.11115=2111元,即可得至少应该收取保险费每人 =21元17、0.50【解析】直接使用科学计算器计算即可,结果需保留二位有效数字.【详解】用科学计算器计算得0.5,故填0.50,【点睛】此题主要考查科学计算器的使用,注意结果保留二位有效数字.18、(x4)(x6)【解析】因为(4)(6)=24,(4)+(6)=10,所以利用十字相乘法分解因式即可.【详解】x210x+24= x210x+(4)(6)=(x4)(x6)【点睛】本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤1
20、9、(1)大货车用8辆,小货车用7辆;(2)y=100x+1(3)见解析. 【解析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:大货车用8辆,小货车用7辆(2)y=800x+900(8-x)+400(10-x)+6007-
21、(10-x)=100x+1(3x8,且x为整数)(3)由题意得:12x+8(10-x)100,解得:x5,又3x8,5x8且为整数,y=100x+1,k=1000,y随x的增大而增大,当x=5时,y最小,最小值为y=1005+1=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元20、见解析.【解析】利用矩形的性质结合平行线的性质得出CDF+ADF90,进而得出CDFDAF,由ADBC,得出答案.【详解】四边形ABCD是矩形,ADC90,ADBC,CDF+ADF90,DFAE于点F,DAF+ADF90,CDFDAF.A
22、DBC,DAFAEB,AEBCDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出CDFDAF是解题关键.21、 【解析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()=【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.22、(1)m;(2)m2【解析】(1)利用判别式的意义得到(2m+3)24(m2+2)1,然后解不等式即可;(2)根据题意x1+x22m+3,x1x2m2+2,由条件得x12+x2231+x1x2,再利用完全平方公式得(x1+x2)23x1x2311,所以2m+3)23(m2+2)311,然后解关于m的方程,最后利用m的范
23、围确定满足条件的m的值【详解】(1)根据题意得(2m+3)24(m2+2)1,解得m;(2)根据题意x1+x22m+3,x1x2m2+2,因为x1x2m2+21,所以x12+x2231+x1x2,即(x1+x2)23x1x2311,所以(2m+3)23(m2+2)311,整理得m2+12m281,解得m114,m22,而m;所以m2【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,灵活应用整体代入的方法计算23、(1)QEP=60;(2)QEP=60,证明详见解析;(3)【解析】(1)如图1,先根据旋转的性质和等边三角形的性质得出PCA=QCB,进
24、而可利用SAS证明CQBCPA,进而得CQB=CPA,再在PEM和CQM中利用三角形的内角和定理即可求得QEP=QCP,从而完成猜想;(2)以DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明ACPBCQ,可得APC=Q,进一步即可证得结论;(3)仿(2)可证明ACPBCQ,于是AP=BQ,再求出AP的长即可,作CHAD于H,如图3,易证APC=30,ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)QEP=60;证明:连接PQ,如图1,由题意得:PC=CQ,且PCQ=60,ABC是等边三角形,ACB=60,PCA=QCB,则在CPA
25、和CQB中, ,CQBCPA(SAS),CQB=CPA,又因为PEM和CQM中,EMP=CMQ,QEP=QCP=60.故答案为60; (2)QEP=60.以DAC是锐角为例.证明:如图2,ABC是等边三角形,AC=BC,ACB=60,线段CP绕点C顺时针旋转60得到线段CQ,CP=CQ,PCQ=60,ACB+BCP=BCP+PCQ,即ACP=BCQ,在ACP和BCQ中, ,ACPBCQ(SAS),APC=Q,1=2,QEP=PCQ=60; (3)连结CQ,作CHAD于H,如图3,与(2)一样可证明ACPBCQ,AP=BQ,DAC=135,ACP=15,APC=30,CAH=45,ACH为等腰直
26、角三角形,AH=CH=AC=4=,在RtPHC中,PH=CH=,PA=PHAH=,BQ=.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.24、10【解析】试题分析:如图:过点C作CDAB于点D,在RtACD中,利用ACD的正切可得AD=0.625CD,同样在RtBCD中,可得BD= 0.755CD,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C作CDAB于点D,由已知可得:
27、ACD=32,BCD =37,在RtACD中,ADC=90,AD=CDtanACD=CDtan32=0.625CD,在RtBCD中,BDC=90,BD=CDtanBCD=CDtan37=0.755CD,AB=BD-CD=780,0.755CD-0.625CD=780,CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.25、(1)2400个, 10天;(2)1人【解析】(1)设原计划每天生产零件x个,根据相等关系“原计划生产24000个零件所用时间=实际生产(24000+300)个零件所用的时间
28、”可列方程,解出x即为原计划每天生产的零件个数,再代入即可求得规定天数;(2)设原计划安排的工人人数为y人,根据“(5组机器人生产流水线每天生产的零件个数+原计划每天生产的零件个数)(规定天数-2)=零件总数24000个”可列方程520(1+20%)+2400 (10-2)=24000,解得y的值即为原计划安排的工人人数【详解】解:(1)解:设原计划每天生产零件x个,由题意得,解得x=2400,经检验,x=2400是原方程的根,且符合题意规定的天数为240002400=10(天)答:原计划每天生产零件2400个,规定的天数是10天(2)设原计划安排的工人人数为y人,由题意得,520(1+20%
29、)+2400 (10-2)=24000,解得,y=1经检验,y=1是原方程的根,且符合题意答:原计划安排的工人人数为1人【点睛】本题考查分式方程的应用,找准等量关系是本题的解题关键,注意分式方程结果要检验26、(1)y=100x+17360;(2)3种方案:A型车21辆,B型车41辆最省钱.【解析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题【详解】(1)由题意:y=380x+280(62-x)=100x+17360,30x+20(62-x)1441,x20.1,又x为整数,x的取值范围为21x62的整数
30、;(2)由题意100x+1736019720,x23.6,21x23,共有3种租车方案,x=21时,y有最小值=1即租租A型车21辆,B型车41辆最省钱【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题27、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式; (2)首先求得AB与x轴的交点,设交点是C,然后根据SABP=SACP+SBCP即可列方程求得P的横坐标试题解析:(1)反比例函数y=(m0)的图象过点A(1,1), 1= m=1 反比例函数的表达式为y= 一次函数y=kx+b的图象过点A(1,1)和B(0,-2) , 解得:, 一次函数的表达式为y=x-2; (2)令y=0,x-2=0,x=2, 一次函数y=x-2的图象与x轴的交点C的坐标为(2,0) SABP=1, PC1+PC2=1 PC=2, 点P的坐标为(0,0)、(4,0)【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据SABP=SACP+SBCP列方程是关键