江苏省扬大附中东部分校2022-2023学年中考五模数学试题含解析.doc

上传人:茅**** 文档编号:88304690 上传时间:2023-04-25 格式:DOC 页数:17 大小:809.50KB
返回 下载 相关 举报
江苏省扬大附中东部分校2022-2023学年中考五模数学试题含解析.doc_第1页
第1页 / 共17页
江苏省扬大附中东部分校2022-2023学年中考五模数学试题含解析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《江苏省扬大附中东部分校2022-2023学年中考五模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬大附中东部分校2022-2023学年中考五模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一元二次方程(x+2017)21的解为( )A2016,2018B2016C2018D20172计算(ab2)3的结果是()Aab5Bab6Ca3b5Da3b63如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观

2、察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形)小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表: 转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )A0.33B0.34C0.20D0.354在下列交通标志中,是中心对称图形的是()ABCD5如图,ABC中,D为BC的中点

3、,以D为圆心,BD长为半径画一弧交AC于E点,若A=60,B=100,BC=4,则扇形BDE的面积为何?()ABCD6如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S2018的值为()ABCD7如图,将OAB绕O点逆时针旋转60得到OCD,若OA4,AOB35,则下列结论错误的是()ABDO60BBOC25COC4DBD48如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分

4、别为()A(2,2),(3,2)B(2,4),(3,1)C(2,2),(3,1)D(3,1),(2,2)9某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )A8米B米C米D米10利用“分形”与“迭代”可以制作出很多精美的图形,以下是制作出的几个简单图形,其中是轴对称但不是中心对称的图形是()ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,一次函数y1=kx+b的图象与反比例函数y2=(x0)的图象相交于点A和点B当y1y20时,x的取值范围是_12如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取

5、一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_13已知点、都在反比例函数的图象上,若,则k的值可以取_写出一个符合条件的k值即可14有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是 15若不等式组的解集是1x1,则a_,b_16如图,点A的坐标为(3,),点B的坐标为(6,0),将AOB绕点B按顺时针方向旋转一定的角度后得到AOB,点A的对应点A在x轴上,则点O的坐标为_17在平面直角坐标系内,一次函数与的图像之间的距离为3,则b的值为_三、解答题(共7小题,满分69分)18(10分)如图,ABC的顶点

6、坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90后得到的A1B1C119(5分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_,(2)当点P在线段MN上运动,且使PA2PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)20(8分)如图1,在平面直角坐标系中,直线y=x+1与抛物线y=ax2+bx+c(a0)相交于点A(1,0)和点D(

7、4,5),并与y轴交于点C,抛物线的对称轴为直线x=1,且抛物线与x轴交于另一点B(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出ACE面积的最大值;(3)如图2,若点M是直线x=1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由21(10分)如图,已知AB是圆O的直径,弦CDAB,垂足H在半径OB上,AH=5,CD=,点E在弧AD上,射线AE与CD的延长线交于点F(1)求圆O的半径;(2)如果AE=6,求EF的长22(10分)如图,已知ABC是等边三角形,点D在AC边上一点,连接BD,以BD

8、为边在AB的左侧作等边DEB,连接AE,求证:AB平分EAC23(12分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数第9个数第n个数A组65258n22n5B组1471025(1)A组第4个数是 ;用含n的代数式表示B组第n个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明24(14分)如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F 求证:ABECAD;求BFD的度数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】利用直接开平方法解方程【详解】(x+2017)2=1x+2

9、017=1,所以x1=-2018,x2=-1故选A【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程2、D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可试题解析:(ab2)3=a3(b2)3=a3b1故选D考点:幂的乘方与积的乘方3、A【解析】根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动

10、的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确4、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C5、C【解析】分析:求出扇形的圆心角以及半径即可解决问题;详解:A=60,B=100,C=18060100=20,DE=DC,C=DEC=20,BDE=C+DEC=40,S扇形DBE=故选C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=6、A【解析】根据等腰直角三角形的性质可得出

11、2S2S1,根据数的变化找出变化规律“Sn()n2”,依此规律即可得出结论【详解】如图所示,正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2CD2,DECE,2S2S1观察,发现规律:S1224,S2S12,S2S21,S4S2,Sn()n2当n2018时,S2018()20182()3故选A【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“Sn()n2”7、D【解析】由OAB绕O点逆时针旋转60得到OCD知AOC=BOD=60,AO=CO=4、BO=DO,据此可判断C;由AOC、BOD是等边三角形可判断A选项;由AOB=35,AOC=60可判断B

12、选项,据此可得答案【详解】解:OAB绕O点逆时针旋转60得到OCD,AOC=BOD=60,AO=CO=4、BO=DO,故C选项正确;则AOC、BOD是等边三角形,BDO=60,故A选项正确;AOB=35,AOC=60,BOC=AOC-AOB=60-35=25,故B选项正确.故选D【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等及等边三角形的判定和性质8、C【解析】直接利用位似图形的性质得出对应点坐标乘以得出即可【详解】解:线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第

13、一象限内将线段AB缩小为原来的后得到线段CD,端点的坐标为:(2,2),(3,1)故选C【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键9、C【解析】此题考查的是解直角三角形如图:AC=4,ACBC,梯子的倾斜角(梯子与地面的夹角)不能60ABC60,最大角为60即梯子的长至少为米,故选C.10、A【解析】根据:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.逐个按要求分析即可.【详解】选项A,是轴对称图形,不是中心对称图形,故可以选;选

14、项B,是轴对称图形,也是中心对称图形,故不可以选;选项C,不是轴对称图形,是中心对称图形,故不可以选;选项D,是轴对称图形,也是中心对称图形,故不可以选.故选A【点睛】本题考核知识点:轴对称图形和中心对称图形.解题关键点:理解轴对称图形和中心对称图形定义.错因分析 容易题.失分的原因是:没有掌握轴对称图形和中心对称图形的定义.二、填空题(共7小题,每小题3分,满分21分)11、-2x1+a ,解不等式得:x不等式组的解集为: 1+ax不等式组的解集是1x1,.1+a=-1, =1,解得:a=-2,b=-3故答案为: -2, -3.【点睛】本题主要考查解含参数的不等式组.16、(,)【解析】作A

15、COB、ODAB,由点A、B坐标得出OC=3、AC=、BC=OC=3,从而知tanABC=,由旋转性质知BO=BO=6,tanABO=tanABO=,设OD=x、BD=3x,由勾股定理求得x的值,即可知BD、OD的长即可.【详解】如图,过点A作ACOB于C,过点O作ODAB于D,A(3, ),OC=3,AC=,OB=6,BC=OC=3,则tanABC=,由旋转可知,BO=BO=6,ABO=ABO,=,设OD=x,BD=3x,由OD2+BD2=OB2可得(x)2+(3x)2=62,解得:x=或x= (舍),则BD=3x=,OD=x=,OD=OB+BD=6+=,点O的坐标为(,).【点睛】本题考查

16、的是图形的旋转,熟练掌握勾股定理和三角函数是解题的关键.17、或【解析】设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出BAD=ACO,再利用ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD直线y=2x-b于点D,如图所示直线y=2x-1与x轴交点为C,与y轴交点为A,点A(0,-1),点C(,0),OA=1,OC=,AC=,cosACO=BAD与CAO互余,ACO与CAO互余

17、,BAD=ACOAD=3,cosBAD=,AB=3直线y=2x-b与y轴的交点为B(0,-b),AB=|-b-(-1)|=3,解得:b=1-3或b=1+3故答案为1+3或1-3【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键三、解答题(共7小题,满分69分)18、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,A1B1C1为所作,A(1,6);(1)如图,A1B1C1为所作19、(1);(2)见解析.【解析】(1)根据勾股定理即可

18、得到结论;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果【详解】(1);(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键20、(1)y=x2+2x3;(2);(3)详见解析.【解析】试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;(2)过点E作EFy轴,交AD与点F,过点C作CHEF,垂足为H设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m

19、+4,然后依据ACE的面积=EFA的面积-EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得ACE的最大值即可;(3)当AD为平行四边形的对角线时设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据,可求得a的值;当AD为平行四边形的边时设点M的坐标为(-1,a)则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值试题解析:(1)A(1,0),抛物线的对称轴为直线x1,B(3,0),设抛物线的表达式为ya(x3)(x1),将点D(4,5)代入,得

20、5a5,解得a1,抛物线的表达式为yx22x3;(2)过点E作EFy轴,交AD与点F,交x轴于点G,过点C作CHEF,垂足为H.设点E(m,m22m3),则F(m,m1)EFm1m22m3m23m4.SACESEFASEFCEFAGEFHCEFOA (m)2.ACE的面积的最大值为;(3)当AD为平行四边形的对角线时:设点M的坐标为(1,a),点N的坐标为(x,y)平行四边形的对角线互相平分,解得x2,y5a,将点N的坐标代入抛物线的表达式,得5a3,解得a8,点M的坐标为(1,8),当AD为平行四边形的边时:设点M的坐标为(1,a),则点N的坐标为(6,a5)或(4,a5),将x6,ya5代

21、入抛物线的表达式,得a536123,解得a16,M(1,16),将x4,ya5代入抛物线的表达式,得a51683,解得a26,M(1,26),综上所述,当点M的坐标为(1,26)或(1,16)或(1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形21、 (1) 圆的半径为4.5;(2) EF=【解析】(1)连接OD,根据垂径定理得:DH=2,设圆O的半径为r,根据勾股定理列方程可得结论;(2)过O作OGAE于G,证明AGOAHF,列比例式可得AF的长,从而得EF的长【详解】(1)连接OD,直径AB弦CD,CD=4,DH=CH=CD=2,在RtODH中,AH=5,设圆O的半径为r,根据

22、勾股定理得:OD2=(AHOA)2+DH2,即r2=(5r)2+20,解得:r=4.5,则圆的半径为4.5;(2)过O作OGAE于G,AG=AE=6=3,A=A,AGO=AHF,AGOAHF,AF=,EF=AFAE=6=【点睛】本题考查了垂径定理,勾股定理,相似三角形的判定与性质,解答本题的关键是正确添加辅助线并熟练掌握垂径定理和相似三角形的判定与性质.22、详见解析【解析】由等边三角形的性质得出AB=BC,BD=BE,BAC=BCA=ABC=DBE=60,证出ABE=CBD,证明ABECBD(SAS),得出BAE=BCD=60,得出BAE=BAC,即可得出结论【详解】证明:ABC,DEB都是

23、等边三角形,ABBC,BDBE,BACBCAABCDBE60,ABCABDDBEABD,即ABECBD,在ABE和CBD中,AB=CB,ABE=CBD,BE=BD,,ABECBD(SAS),BAEBCD60,BAEBAC,AB平分EAC【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键23、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析【解析】(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,9,时对应的数分别为31-2,32-2,33-2,39-2,由此可归纳出第n个数是3n-2;(3)“

24、在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题【详解】解:(1)A组第n个数为n2-2n-5,A组第4个数是42-24-5=3,故答案为3;(2)第n个数是理由如下:第1个数为1,可写成31-2;第2个数为4,可写成32-2;第3个数为7,可写成33-2;第4个数为10,可写成34-2;第9个数为25,可写成39-2;第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,解之得,由于是正整数,所以不存在列上两个数相等【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键24、(1)证明见解析;(2).【解析】试题分析:(1)根据等边三角形的性质根据SAS即可证明ABECAD;(2)由三角形全等可以得出ABE=CAD,由外角与内角的关系就可以得出结论试题解析:(1)ABC为等边三角形,AB=BC=AC,ABC=ACB=BAC=60在ABE和CAD中,AB=CA, BAC=C,AE =CD, ABECAD(SAS),(2)ABECAD,ABE=CAD,BAD+CAD=60,BAD+EBA=60,BFD=ABE+BAD,BFD=60

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁