《江苏省宿迁市沭阳县重点名校2023年中考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市沭阳县重点名校2023年中考数学押题试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1一元二次方程的根是( )ABCD2如图,在ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED/BC的是( )ABCD
2、3若函数y=kxb的图象如图所示,则关于x的不等式k(x3)b0的解集为()Ax2Bx2Cx5Dx54方程的解是( ).ABCD5长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A米 B米C米 D米6如图,O是ABC的外接圆,AD是O的直径,连接CD,若O的半径r=5,AC=5 ,则B的度数是( )A30 B45 C50 D607已知,则的值是A60B64C66D728下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD9如图所示,点E在AC的延长线上,下列条件中能判断A
3、BCD的是( )A3=ABD=DCEC1=2DD+ACD=18010将一次函数的图象向下平移2个单位后,当时,的取值范围是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11已知:如图,ABC内接于O,且半径OCAB,点D在半径OB的延长线上,且A=BCD=30,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为_12在函数中,自变量x的取值范围是_13将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_14在平面直角坐标系中,将点A(3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是_15把两个同样大小的含45角的三角
4、尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上若AB=,则CD=_16若关于的一元二次方程有实数根,则的取值范围是_17计算的结果等于_三、解答题(共7小题,满分69分)18(10分)先化简,再求值:a(a3b)+(a+b)2a(ab),其中a=1,b=19(5分)如图,在ABC中,AB=AC,以AB为直径的O与BC交于点D,过点D作ABD=ADE,交AC于点E(1)求证:DE为O的切线(2)若O的半径为,AD=,求CE的长20(8分)如图,在ABC中,AB=AC,以AB为直径作O交BC于点D,过点D作O的切线DE交AC于点
5、E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长21(10分)进入防汛期后,某地对河堤进行了加固该地驻军在河堤加固的工程中出色完成了任务这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数22(10分)如图,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出ABC向左平移5个单位长度后得到的ABC; 请画出ABC关于原点对称的ABC; 在轴上求作一点P,使PAB的周长最小,请画出PAB,并直接写出P的坐标.23(12分)()如图已知四边形中,BC=b,求:对角线长度的最
6、大值;四边形的最大面积;(用含,的代数式表示)()如图,四边形是某市规划用地的示意图,经测量得到如下数据:,请你利用所学知识探索它的最大面积(结果保留根号)24(14分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题原方程可化为:,因此或,所以故选D
7、考点:一元二次方程的解法因式分解法提公因式法2、C【解析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可【详解】A. 当时,能判断;B.当时,能判断;C.当时,不能判断;D.当时,能判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.3、C【解析】根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x3)b0中进行求解即可【详解】解:
8、一次函数y=kxb经过点(2,0),2kb=0,b=2k函数值y随x的增大而减小,则k0;解关于k(x3)b0,移项得:kx3k+b,即kx1k;两边同时除以k,因为k0,因而解集是x1故选C【点睛】本题考查一次函数与一元一次不等式4、B【解析】直接解分式方程,注意要验根.【详解】解:=0,方程两边同时乘以最简公分母x(x+1),得:3(x+1)-7x=0,解这个一元一次方程,得:x=,经检验,x=是原方程的解.故选B.【点睛】本题考查了解分式方程,解分式方程不要忘记验根.5、D【解析】先将25 100用科学记数法表示为2.51104,再和10-9相乘,等于2.5110-5米故选D6、D【解析
9、】根据圆周角定理的推论,得B=D根据直径所对的圆周角是直角,得ACD=90在直角三角形ACD中求出D 则sinD=D=60B=D=60故选D“点睛”此题综合运用了圆周角定理的推论以及锐角三角函数的定义,解答时要找准直角三角形的对应边7、A【解析】将代入原式,计算可得【详解】解:当时,原式,故选A【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式8、B【解析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1故选B【点睛】此题考查了三视图判断几何体,用到的知识点
10、是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.9、C【解析】由平行线的判定定理可证得,选项A,B,D能证得ACBD,只有选项C能证得ABCD注意掌握排除法在选择题中的应用【详解】A.3=A,本选项不能判断ABCD,故A错误;B.D=DCE,ACBD.本选项不能判断ABCD,故B错误;C.1=2,ABCD.本选项能判断ABCD,故C正确;D.D+ACD=180,ACBD.故本选项不能判断ABCD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.10、C【解析】直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案【详解】将
11、一次函数向下平移2个单位后,得:,当时,则:,解得:,当时,故选C【点睛】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键二、填空题(共7小题,每小题3分,满分21分)11、2【解析】试题分析:根据题意可得:O=2A=60,则OBC为等边三角形,根据BCD=30可得:OCD=90,OC=AC=2,则CD=,则12、x1且x1【解析】试题分析:根据二次根式有意义,分式有意义得:1x0且x+10,解得:x1且x1故答案为x1且x1考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件13、y=2x+1【解析】分析:直接根据函数图象平移的法则
12、进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键14、(0,0)【解析】根据坐标的平移规律解答即可【详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A的坐标是(-3+3,2-2),即(0,0),故答案为(0,0)【点睛】此题主要考查坐标与图形变化-平移平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减15、 【解析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股
13、定理求出DF,即可得出结论【详解】如图,过点A作AFBC于F,在RtABC中,B=45,BC=AB=2,BF=AF=AB=1,两个同样大小的含45角的三角尺,AD=BC=2,在RtADF中,根据勾股定理得,DF=CD=BF+DF-BC=1+-2=-1,故答案为-1【点睛】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键16、【解析】由题意可得,=9-4m0,由此求得m的范围【详解】关于x的一元二次方程x2-3x+m=0有实数根,=9-4m0,求得 m.故答案为:【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.17、【解析】根
14、据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解: .故填.【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.三、解答题(共7小题,满分69分)18、 【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【详解】解:原式=a23ab+a2+2ab+b2a2+ab=a2+b2,当a=1、b=时,原式=12+()2=1+=【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键19、 (1)证明见解析;(2)CE=1【解析】(1)求出ADO+ADE=90,推DEOD,根据切线的判定推出即可;(2)求出
15、CD,AC的长,证CDECAD,得出比例式,求出结果即可【详解】(1)连接OD,AB是直径,ADB=90,ADO+BDO=90,OB=OD,BDO=ABD,ABD=ADE,ADO+ADE=90,即,ODDE,OD为半径,DE为O的切线;(2)O的半径为,AB=2OA=AC,ADB=90,ADC=90,在RtADC中,由勾股定理得:DC=5,ODE=ADC=90,ODB=ABD=ADE,EDC=ADO,OA=OD,ADO=OAD,AB=AC,ADBC,OAD=CAD,EDC=CAD,C=C,CDECAD,=,=,解得:CE=1【点睛】本题考查了等腰三角形的性质与切线的判定,解题的关键是熟练的掌握
16、等腰三角形的性质与切线的判定.20、(1)详见解析;(2)详见解析;(3)DF=【解析】(1)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90,OA=O
17、B,OD=AB=,由(1)知,CD=BC=3,由(2)知,CD2=CEAC,AC=5,CE=,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键21、300米【解析】解:设原来每天加固x米,根据题意,得 去分母,得 1200+4200=18x(或18x=5400)解得检验:当时,(或分母不等于0)是原方程的解 答:该地驻军原来每天加固300米22、(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0
18、)【解析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点【详解】(1)A1B1C1如图所示;(2)A2B2C2如图所示;(3)PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用23、(1);(2)150475475.【解析】(1)由条件可知AC为直径,可知BD长度的最大值为
19、AC的长,可求得答案;连接AC,求得AD2CD2,利用不等式的性质可求得ADCD的最大值,从而可求得四边形ABCD面积的最大值;(2)连接AC,延长CB,过点A做AECB交CB的延长线于E,可先求得ABC的面积,结合条件可求得D45,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,ACD的面积最大,AC的中垂线交圆O于点D,交AC于F,FD即为所求最大值,再求得ACD的面积即可【详解】(1)因为BD90,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD,连接AC,则AC2AB2BC2a2b2AD2CD2,SACDADCD(
20、AD2CD2)(a2b2),所以四边形ABCD的最大面积(a2b2)ab;(2)如图,连接AC,延长CB,过点A作AECB交CB的延长线于E,因为AB20,ABE180ABC60,所以AEABsin6010,EBABcos6010,SABCAEBC150,因为BC30,所以ECEBBC40,AC10,因为ABC120,BADBCD195,所以D45,则ACD中,D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,当点D与AC的距离最大时,ACD的面积最大,AC的中垂线交圆O于点D,交AC于F,FD即为所求最大值,连接OA、OC,AOC2ADC90,
21、OAOC,所以AOC,AOF等腰直角三角形,AOOD5,OFAF5,DF55,SACDACDF5(55)475475,所以SmaxSABCSACD150475475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键本题考查知识点较多,综合性很强,计算量很大,难度适中24、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型