《江苏省扬州市仙城联合体2022-2023学年中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省扬州市仙城联合体2022-2023学年中考四模数学试题含解析.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1若点A(a,b),B(,c)都在反比例函数y的图象上,且1c0,则一次函数y(bc)x+ac的大致图象是()ABCD2有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,63tan45的值为( )AB1CD4已知O的半径为5,若OP=6,则点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法判断5小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:AB=BC,ABC=90,AC=BD,AC
3、BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )ABCD6如图,三棱柱ABCA1B1C1的侧棱长和底面边长均为2,且侧棱AA1底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )ABCD47弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是( )A90和87.5B95和85C90和85D85和87.58如图是用八块相同的小正方体搭建的几何体,它的左视图是( )ABCD
4、9计算的结果为()ABCD10已知,两数在数轴上对应的点如图所示,下列结论正确的是( )ABCD11如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点已知菱形的一个角为60,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且AED=ACD,则AEC 度数为 ( ) A75B60C45D3012如图,为的直径,为上两点,若,则的大小为()A60B50C40D20二、填空题:(本大题共6个小题,每小题4分,共24分)13算术平方根等于本身的实数是_.14若分式方程的解为正数,则a的取值范围是_15如图,为了测量铁塔AB高度,在离铁塔底部(点B)60米的C处,测得塔顶A
5、的仰角为30,那么铁塔的高度AB=_米16已知a、b满足a2+b28a4b+20=0,则a2b2=_17有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是_18如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(3,4),与y轴交于点C(1)求抛
6、物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EBBC上的一个动点,当点P在线段BC上时,连接EP,若EPBC,请直接写出线段BP与线段AE的关系;过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M,如果点M恰好在坐标轴上,请直接写出此时点P的坐标20(6分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两
7、机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FGx轴,则此段时间,甲机器人的速度为 米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米21(6分)【发现证明】如图1,点E,F分别在正方形ABCD的边BC,CD上,EAF=45,试判断BE,EF,FD之间的数量关系小聪把ABE绕点A逆时针旋转90至ADG,通过证明AEFAGF;从而发现并证明了
8、EF=BE+FD【类比引申】(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,EAF=45,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;【联想拓展】(2)如图3,如图,BAC=90,AB=AC,点E、F在边BC上,且EAF=45,若BE=3,EF=5,求CF的长22(8分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班 (用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图请 根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_件作品;(2)如果全校征集的
9、作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率23(8分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,)24(10分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m0,n0),E点在边BC上,F点在边OA上将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m8,n 4,直接写出E、F的坐标;
10、(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tanEFO的值.25(10分)如图1,在RtABC中,C=90,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE将ADE绕点A逆时针方向旋转,记旋转角为(1)问题发现当=0时,= ;当=180时,= (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决在旋转过程中,BE的最大值为 ;当ADE旋转至B、D、E三点共线时,线段CD的长为 26(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过
11、收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.27(12分)如图,ABC中,AB=AC=4,D、E分别为AB、AC的中点,连接CD,过E作EFDC交BC的延长线于F;(1)求证:DE=CF;(2)若B=60,求EF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四
12、个选项中,只有一项是符合题目要求的)1、D【解析】将,代入,得,然后分析与的正负,即可得到的大致图象.【详解】将,代入,得,即,即与异号又,故选D【点睛】本题考查了反比例函数图像上点的坐标特征,一次函数的图像与性质,得出与的正负是解答本题的关键.2、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数3、B【解析】解:根据特殊角的三角函数值可得tan45=1,故选B【点睛】本题考查特殊角的三角函数值4、B【解析】比较OP与半径
13、的大小即可判断.【详解】,点P在外,故选B【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.5、B【解析】A、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当ABC=90时,菱形ABCD是正方形,故此选项正确,不合题意;B、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;C、四边形ABCD是平行四边形,当AB=BC时,平行四边形ABCD是菱形,当AC=BD时,菱形ABCD是正
14、方形,故此选项正确,不合题意;D、四边形ABCD是平行四边形,当ABC=90时,平行四边形ABCD是矩形,当ACBD时,矩形ABCD是正方形,故此选项正确,不合题意故选C6、B【解析】分析:易得等边三角形的高,那么左视图的面积=等边三角形的高侧棱长,把相关数值代入即可求解详解:三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,等边三角形的高CD=,侧(左)视图的面积为2,故选B点睛:本题主要考查的是由三视图判断几何体解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度7、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;
15、众数是一组数据中出现次数最多的数据,可得答案解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数8、B【解析】根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案【详解】左视图是从左往右看,左侧一列有2层,右侧一列有
16、1层1,选项B中的图形符合题意,故选B【点睛】本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图9、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。10、C【解析】根据各点在数轴上位置即可得出结论【详解】由图可知,ba0,A.ba0,a+b0,故本选项错误;B.ba0,故本选项错误;C.bab,故本选项正确;D.ba0,ba0,故本选项错误.故选C.11、B【解析】将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出C
17、ME为等边三角形,进而即可得出AEC的值【详解】将圆补充完整,找出点E的位置,如图所示弧AD所对的圆周角为ACD、AEC,图中所标点E符合题意四边形CMEN为菱形,且CME=60,CME为等边三角形,AEC=60故选B.【点睛】本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键12、B【解析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,为的直径,故选:B【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.二、填空题:(本大题共6个小题,每小题4分,共24分)13、0或1【解析】根据
18、负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身14、a8,且a1【解析】分式方程去分母得:x=2x-8+a,解得:x=8- a,根据题意得:8- a2,8- a1,解得:a8,且a1故答案为:a8,且a1【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据分式方程解为正数求出a的范围即可此题考查了分式方程的解,需注意在任何时候都要考虑分母不为215、20【解析】在RtABC中,直接利用tanACB=tan30=即可.【
19、详解】在RtABC中,tanACB=tan30=,BC=60,解得AB=20.故答案为20.【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.16、1【解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a、b,计算即可【详解】a2+b28a4b+20=0,a28a+16+b24b+4=0,(a4)2+(b2)2=0a4=0,b2=0,a=4,b=2,则a2b2=164=1,故答案为1【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键17、【解析】分析:直接利用中心对称图形的性质结合概率求法直接得出答案详解
20、:等腰三角形、平行四边形、矩形、正方形、菱形中,平行四边形、矩形、正方形、菱形都是中心对称图形,从中随机抽取一张,卡片上的图形是中心对称图形的概率是:故答案为点睛:此题主要考查了中心对称图形的性质和概率求法,正确把握中心对称图形的定义是解题关键18、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率详解:英文单词probability中,一共有11个字母,其中字母b有2个,任取一张,那么取到字母b的概率为 故答案为点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过
21、程或演算步骤19、(1)y=x2+x+2;(2)y=2x+2;(3)线段BP与线段AE的关系是相互垂直;点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【解析】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM=PM即可求解【详解】(1)将A(5,0)和点B(3,4)代入y=ax2+bx+2,解得:a=,b=,故函数的表达式为y=x2+x+2;(2)
22、C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)E是点B关于y轴的对称点,E坐标为(3,4),则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,AEBC,而EPBC,BPAE而BP=AE,线段BP与线段AE的关系是相互垂直;设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MMBC,kMM=,直线MM的方程为:y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),由题意得:PM=PM=2m,PM2=42+m2=(2m)2,此式不成立,或PM2
23、=m2+(2m+2)2=(2m)2,解得:m=42,故点P的坐标为(42,84);当P点在线段BE上时,点P坐标为(m,4),点M坐标为(m,2),则PM=6,直线MM的方程不变,为y=x+(2+m),则M坐标为(0,2+m)或(4+m,0),PM2=m2+(6+m)2=(2m)2,解得:m=0,或;或PM2=42+42=(6)2,无解;故点P的坐标为(0,4)或(,4);综上所述:点P的坐标为:(4+2,8+4)或(42,84)或(0,4)或(,4)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线
24、段的长度,从而求出线段之间的关系20、(1)距离是70米,速度为95米/分;(2)y=35x70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米【解析】(1)当x=0时的y值即为A、B两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)时间=A、B两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、
25、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+602)2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,1(9560)=35,点F的坐标为(3,35),则,解得,线段EF所在直线的函数解析式为y=35x70;(3)线段FGx轴,甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+607=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+7095x=21,解得,x=1.2,前2分钟3分钟,两机器人相距21米时,由题意得,35x70=21,解得,x=2.14分钟7分钟,直线GH经过点(4,35)和点(7,0),设线段GH
26、所在直线的函数解析式为:y=kx+b,则,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米【点睛】本题考查了一次函数的应用,读懂图像是解题关键.21、(1)DF=EF+BE理由见解析;(2)CF=1【解析】(1)把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,证出AEFAFG,根据全等三角形的性质得出EF=FG,即可得出答案;(2)根据旋转的性质的AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+B=90,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到
27、FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE理由:如图1所示,AB=AD,把ABE绕点A逆时针旋转90至ADG,可使AB与AD重合,ADC=ABE=90,点C、D、G在一条直线上,EB=DG,AE=AG,EAB=GAD,BAG+GAD=90,EAG=BAD=90,EAF=15,FAG=EAGEAF=9015=15,EAF=GAF,在EAF和GAF中,EAFGAF,EF=FG,FD=FG+DG,DF=EF+BE;(2)BAC=90,AB=AC,将ABE绕点A顺时针旋转90得ACG,连接FG,如图2,AG=AE,CG=BE,ACG=B,EAG=90,FCG=ACB+ACG=ACB+
28、B=90,FG2=FC2+CG2=BE2+FC2;又EAF=15,而EAG=90,GAF=9015,在AGF与AEF中,AEFAGF,EF=FG,CF2=EF2BE2=5232=16,CF=1“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫22、(1)图形见解析,216件;(2)【解析】(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从
29、中找到一男、一女的结果数,根据概率公式求解可得【详解】(1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;估计全校共征集作品36=324件条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种所以选取的两名学生恰好是一男一女的概率为【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的
30、知识注意掌握扇形统计图与条形统计图的对应关系用到的知识点为:概率=所求情况数与总情况数之比23、6.58米【解析】试题分析:过A点作AECD于E在RtABE中,根据三角函数可得AE,BE,在RtADE中,根据三角函数可得DE,再根据DB=DEBE即可求解试题解析:过A点作AECD于E 在RtABE中,ABE=62 AE=ABsin62=250.88=22米,BE=ABcos62=250.47=11.75米, 在RtADE中,ADB=50, DE=18米,DB=DEBE6.58米 故此时应将坝底向外拓宽大约6.58米考点:解直角三角形的应用-坡度坡角问题24、(1)E(3,4)、F(5,0);(
31、2);(3).【解析】(1) 连接OE,BF,根据题意可知:设则根据勾股定理可得:即解得:即可求出点E的坐标,同理求出点F的坐标.(2) 连接BF、OE,连接BO交EF于G由翻折可知:GOGB,BEOE,证明BGEOGF,证明四边形OEBF为菱形,令y0,则,解得 , 根据菱形的性质得OF=OE=BE=BF=令yn,则,解得 则CE=,在RtCOE中, 根据勾股定理列出方程,即可求出点E的坐标,即可求出k的值;(3) 设EB=EO=x,则CE=mx,在RtCOE中,根据勾股定理得到(mx)2n2x2,解得,求出点E()、F(),根据中点公式得到EF的中点为(),将E()、()代入中,得,得m2
32、2n2 即可求出tanEFO.【详解】解:(1)如图:连接OE,BF,E(3,4)、F(5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GOGB,BEOE可证:BGEOGF(ASA)BEOF 四边形OEBF为菱形令y0,则,解得 ,OF=OE=BE=BF=令yn,则,解得 CE=在RtCOE中,解得 E()(3) 设EB=EO=x,则CE=mx,在RtCOE中,(mx)2n2x2,解得E()、F()EF的中点为()将E()、()代入中,得,得m22n2 tanEFO【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比
33、较强,难度较大.25、(1);(2)无变化,证明见解析;(3)2+2 +1或1.【解析】(1)先判断出DECB,进而得出比例式,代值即可得出结论;先得出DEBC,即可得出,再用比例的性质即可得出结论;(2)先CAD=BAE,进而判断出ADCAEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD【详解】解:(1)当=0时,在RtABC中,AC=BC=2,A=B=45,AB=2,AD=DE=AB=,AED=A=45,ADE=90,DECB,故答案为,当=180时,如图1,DEBC,即:,故答案为;(2)当0360时,的大小没有变化,理由
34、:CAB=DAE,CAD=BAE,ADCAEB,;(3)当点E在BA的延长线时,BE最大,在RtADE中,AE=AD=2,BE最大=AB+AE=2+2;如图2,当点E在BD上时,ADE=90,ADB=90,在RtADB中,AB=2,AD=,根据勾股定理得,BD=,BE=BD+DE=+,由(2)知,CD=+1,如图3, 当点D在BE的延长线上时,在RtADB中,AD=,AB=2,根据勾股定理得,BD=,BE=BDDE=,由(2)知,CD=1故答案为 +1或1【点睛】此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(
35、1)的关键是得出DEBC,解(2)的关键是判断出ADCAEB,解(3)关键是作出图形求出BD,是一道中等难度的题目26、50 见解析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9
36、(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=115.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.27、证明见解析;【解析】根据两组对边分别平行的四边形是平行四边形即可证明;只要求出CD即可解决问题.【详解】证明:、E分别是AB、AC的中点,又四边形CDEF为平行四边形,又为AB中点,在中,四边形CDEF是平行四边形,【点睛】本题考查平行四边形的判定和性质、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型