《江苏省宿迁市宿迁中学2023年高考数学考前最后一卷预测卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省宿迁市宿迁中学2023年高考数学考前最后一卷预测卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的定义域为,且,当时,.若,则函数在上的最大值为( )A4B6C3D82定义在R上的函数,若在区间上为增函数,且存在,使得.则下列不等式不一定成立的是( )ABCD3若单位向量,夹角为,且,则实数( )A1B2C0或1D2或14一只蚂蚁
2、在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )ABCD5已知的部分图象如图所示,则的表达式是( )ABCD6如图所示,三国时代数学家在周脾算经中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为( )A20B27C54D647如图所示程序框图,若判断框内为“”,则输出( )A2B10C34D988函数(且)的图象可能为( )ABCD9抛物线的焦点为,准线为,是抛物线上的两个动点,且满足,设线段的中点在上的投影
3、为,则的最大值是( )ABCD10已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,则的面积为( )ABCD11甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为 ( )A8B7C6D512如图,正四面体的体积为,底面积为,是高的中点,过的平面与棱、分别交于、,设三棱锥的体积为,截面三角形的面积为,则( )A,B,C,D,二、填空题:本题共4小题,每小题5分,共20分。13已知实数,满足约束条件,则的最小值为_.14已知,满足约束条件,则的最小值为_15定义在R上的函数满足:对任意的,都有;
4、当时,则函数的解析式可以是_.16某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有_种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面. (1)求证: 是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.18(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点
5、的位置.19(12分)已知函数(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围20(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想数据”,现从检测数据中随机抽取个,求“理想数据”的个数
6、的分布列和数学期望.21(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.22(10分)已知椭圆C的中心在坐标原点,其短半轴长为1,一个焦点坐标为,点在椭圆上,点在直线上,且(1)证明:直线与圆相切;(2)设与椭圆的另一个交点为,当的面积最小时,求的长参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,则,即,故函数在上单调递增,故,令,故
7、,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.2、D【解析】根据题意判断出函数的单调性,从而根据单调性对选项逐个判断即可【详解】由条件可得函数关于直线对称;在,上单调递增,且在时使得;又,所以选项成立;,比离对称轴远,可得,选项成立;,可知比离对称轴远,选项成立;,符号不定,无法比较大小,不一定成立故选:【点睛】本题考查了函数的基本性质及其应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、D【解析】利用向量模的运算列方程,结合向量数量积的运算,求得实数的值.【详解】由于,所以,即,即
8、,解得或.故选:D【点睛】本小题主要考查向量模的运算,考查向量数量积的运算,属于基础题.4、A【解析】求出满足条件的正的面积,再求出满足条件的正内的点到顶点、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题5、D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标
9、代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.6、B【解析】设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。7、C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】
10、由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.8、D【解析】因为,故函数是奇函数,所以排除A,B;取,则,故选D.考点:1.函数的基本性质;2.函数的图象.9、B【解析】试题分析:设在直线上的投影分别是,则,又是中点,所以,则,在中,所以,即,所以,故选B考点:抛物线的性质【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化象本题弦的中点到准线的距离首先等于两点到准线距离之和的一半,
11、然后转化为两点到焦点的距离,从而与弦长之间可通过余弦定理建立关系10、A【解析】根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,则.由得,则.又MN为过焦点的弦,所以,则,所以.故选:A【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.11、B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙); A(甲,丁)B(丙)C(乙); A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.
12、 12、A【解析】设,取与重合时的情况,计算出以及的值,利用排除法可得出正确选项.【详解】如图所示,利用排除法,取与重合时的情况.不妨设,延长到,使得,则,由余弦定理得,又,当平面平面时,排除B、D选项;因为,此时,当平面平面时,排除C选项.故选:A.【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行
13、域,该目标函数视为可行解与点的斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.14、2【解析】作出可行域,平移基准直线到处,求得的最小值.【详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.15、(或,答案不唯一)【解析】由可得是奇函数,再由时,可得到满足条件的奇函数非常多,属于开放性试题.【详解】在中,令,得;令,则,故是奇函数,由时,知或等,答案不唯一.故答案为:(或,答案不唯一).【点睛】本题考查抽象函数的性
14、质,涉及到由表达式确定函数奇偶性,是一道开放性的题,难度不大.16、156【解析】先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过 “正难则反”的思想进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) 见解析;(2).【解析】试题分析:(1)连交于可得是中点
15、,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与面的交线,是的中点.(2)取中点,由(1)知两两垂直. 以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系(如图),则各点坐标为.设存在满足要求,且,则由得:,面的一个法向量为,面的一个法向量为,由,得,解得,故存在,使二面角为直角,此时.18、(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【解析】(1)先通过线面垂直的判定定理证明平面
16、,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.【详解】(1)证明:因为,所以,即.又因为,所以,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,.设,代入上式得,所以.设平面的一个法向量为,由,得.令,得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.
17、(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于平面法向量夹角的余弦值,要注意结合图形分析.19、(1);(2).【解析】(1)分类讨论,即可得出结果;(2)先由题意,将问题转化为即可,再求出,的最小值,解不等式即可得出结果.【详解】(1)由得,若,则,显然不成立;若,则,即;若,则,即,显然成立,综上所述,的取值范围是(2)由题意知,要使得不等式恒成立,只需,当时,所以;因为,所以,解得,结合,所以的取值范围是【点睛】本题主要考查含绝对值不等式的解法,以及由不等式恒成立求参数的问题,熟记分类讨论的思想、以及绝对值不等式的性质即可,属于常考题型.20、(
18、1)乙同学正确(2)分布列见解析, 【解析】(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并求出概率,得到分布列,即可求解.【详解】(1)已知变量具有线性负相关关系,故甲不正确,代入两个回归方程,验证乙同学正确,故回归方程为:(2)由(1)得到的回归方程,计算估计数据如下表: “理想数据”有3个,故“理想数据”的个数的取值为:.,于是“理想数据”的个数的分布列【点睛】本题考查样本回归中心点与线性回归直线方程关系,以及离散型随机变量的分布列和期望,意在考查逻辑推理、数学计算能力,
19、属于中档题.21、(1)(2)证明见解析【解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【详解】(1),即当时,不等式化为,当时,不等式化为,此时无解当时,不等式化为,综上,原不等式的解集为(2)要证,恒成立即证,恒成立的最小值为2,只需证,即证又成立,原题得证【点睛】本题考查绝对值不等式的性质、解法,基本不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.22、(1)见解析; (2).【解析】(1)分斜率为0,斜率不存在,斜率不为0三种情
20、况讨论,设的方程为,可求解得到,可得到的距离为1,即得证;(2)表示的面积为,利用均值不等式,即得解.【详解】(1)由题意,椭圆的焦点在x轴上,且,所以所以椭圆的方程为由点在直线上,且知的斜率必定存在,当的斜率为0时,于是,到的距离为1,直线与圆相切当的斜率不为0时,设的方程为,与联立得,所以,从而而,故的方程为,而在上,故,从而,于是此时,到的距离为1,直线与圆相切综上,直线与圆相切(2)由(1)知,的面积为,上式中,当且仅当等号成立,所以面积的最小值为1此时,点在椭圆的长轴端点,为不妨设为长轴左端点,则直线的方程为,代入椭圆的方程解得,即,所以【点睛】本题考查了直线和椭圆综合,考查了直线和圆的位置关系判断,面积的最值问题,考查了学生综合分析,数学运算能力,属于较难题.