江苏省四市2023年高考数学押题试卷含解析.doc

上传人:茅**** 文档编号:88304329 上传时间:2023-04-25 格式:DOC 页数:18 大小:1.79MB
返回 下载 相关 举报
江苏省四市2023年高考数学押题试卷含解析.doc_第1页
第1页 / 共18页
江苏省四市2023年高考数学押题试卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省四市2023年高考数学押题试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省四市2023年高考数学押题试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数(为虚数单位),则下列说法正确的是( )A的虚部为B复数在复平面内对应的点位于第三象限C的共轭复数D2如图,在四边形中,则的长度为( )ABCD3在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD4如图是二次函数的部

2、分图象,则函数的零点所在的区间是( )ABCD5已知i为虚数单位,则( )ABCD6双曲线的离心率为,则其渐近线方程为ABCD7已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p( )A1BC2D48设曲线在点处的切线方程为,则( )A1B2C3D49甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁10已知集合Ay|y,Bx|ylg(x2x2),则R(AB)( )A0,)B(,0),+)C(0,)D(,0,+)11已知,都是偶函

3、数,且在上单调递增,设函数,若,则( )A且B且C且D且12已知函数,若,则等于( )A-3B-1C3D0二、填空题:本题共4小题,每小题5分,共20分。13已知向量,则_.14点到直线的距离为_15已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为_.16在中,若,则 _三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在平行四边形中,现沿对角线将折起,使点A到达点P,点M,N分别在直线,上,且A,B,M,N四点共面.(1)求证:;(2)若平面平面,二面角平面角大小为,求直线与平面所成角的正弦值.18(12分)如图,四棱锥中,底面为直角

4、梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.19(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.20(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.21(12分)已知公比为正数的等比数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.22(10分)在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点的直角坐标.参考答案一、选择题:本题共12小题,每小

5、题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用的周期性先将复数化简为即可得到答案.【详解】因为,所以的周期为4,故,故的虚部为2,A错误;在复平面内对应的点为,在第二象限,B错误;的共轭复数为,C错误;,D正确.故选:D.【点睛】本题考查复数的四则运算,涉及到复数的虚部、共轭复数、复数的几何意义、复数的模等知识,是一道基础题.2、D【解析】设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【点睛】本题主要考查正弦定理和余

6、弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.3、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.4、B【解析】根据二次函数图象的对称轴得出范围

7、,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.5、A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本题考查复数代数运算,属于基础题题.6、A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7、C【解析】设直线l的方程为xy,与抛物线联立利用韦达定理可得p【详解】

8、由已知得F(,0),设直线l的方程为xy,并与y22px联立得y2pyp20,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),y1+y2p,又线段AB的中点M的纵坐标为1,则y0(y1+y2),所以p=2,故选C【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题8、D【解析】利用导数的几何意义得直线的斜率,列出a的方程即可求解【详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题9、C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,

9、即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪

10、最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.10、D【解析】求函数的值域得集合,求定义域得集合,根据交集和补集的定义写出运算结果.【详解】集合Ay|yy|y00,+);Bx|ylg(x2x2)x|x2x20x|0x(0,),AB(0,),R(AB)(,0,+).故选:D.【点睛】该题考查的是有关集合的问题,涉及到的知识点有函数的定义域,函数的值域,集合的运算,属于基础题目.11、A【解析】试题分析:由题意得,若:,若:,若:,综上可知,同理可

11、知,故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致与大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.12、D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系. 二、填空题:

12、本题共4小题,每小题5分,共20分。13、3【解析】由题意得,再代入中,计算即可得答案.【详解】由题意可得,解得,.故答案为:.【点睛】本题考查向量模的计算,考查函数与方程思想、转化与化归思想,考查运算求解能力,求解时注意向量数量积公式的运用.14、2【解析】直接根据点到直线的距离公式即可求出。【详解】依据点到直线的距离公式,点到直线的距离为。【点睛】本题主要考查点到直线的距离公式的应用。15、【解析】由等腰三角形及双曲线的对称性可知或,进而利用两点间距离公式求解即可.【详解】由题设双曲线的左、右焦点分别为,因为左、右焦点和点为某个等腰三角形的三个顶点,当时,由可得,等式两边同除可得,解得(舍

13、);当时,由可得,等式两边同除可得,解得,故答案为:【点睛】本题考查求双曲线的离心率,考查双曲线的几何性质的应用,考查分类讨论思想.16、【解析】分析:首先设出相应的直角边长,利用余弦勾股定理得到相应的斜边长,之后应用余弦定理得到直角边长之间的关系,从而应用正切函数的定义,对边比临边,求得对应角的正切值,即可得结果.详解:根据题意,设,则,根据, 得,由勾股定理可得,根据余弦定理可得,化简整理得,即,解得,所以,故答案是.点睛:该题考查的是有关解三角形的问题,在解题的过程中,注意分析要求对应角的正切值,需要求谁,而题中所给的条件与对应的结果之间有什么样的连线,设出直角边长,利用所给的角的余弦值

14、,利用余弦定理得到相应的等量关系,求得最后的结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)根据余弦定理,可得,利用/,可得/平面,然后利用线面平行的性质定理,/,最后可得结果.(2)根据二面角平面角大小为,可知N为的中点,然后利用建系,计算以及平面的一个法向量,利用向量的夹角公式,可得结果.【详解】(1)不妨设,则,在中,,则,因为,所以,因为/,且A、B、M、N四点共面,所以/平面.又平面平面,所以/.而,.(2)因为平面平面,且,所以平面,因为,所以平面,因为,平面与平面夹角为,所以,在中,易知N为的中点,如图,建立空间直角

15、坐标系,则,设平面的一个法向量为,则由,令,得.设与平面所成角为,则.【点睛】本题考查线面平行的性质定理以及线面角,熟练掌握利用建系的方法解决几何问题,将几何问题代数化,化繁为简,属中档题.18、(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量

16、为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.19、(1)(2)【解析】(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,由此可知,的解集为(2)当时,的最小值为和中的最小值,其中,.所以恒成立.当时,且,不恒成立,不符合题意.当时,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.【点睛】本小题主要考查绝对值不等式的解法,考查根据绝对值

17、不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.20、(1)(2);【解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.21、(1)(2)【解析】(1)判断公比不为1,运用等比数列的求和公式,解方程可得公比,进而得到所求通项公式;(2)求得,运用数列的错位相减法求和,

18、以及等比数列的求和公式,计算可得所求和.【详解】解:(1)设公比为正数的等比数列的前项和为,且,可得时,不成立;当时,即,解得(舍去),则;(2),前项和,两式相减可得,化简可得.【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,考查方程思想和运算能力,属于中档题22、【解析】将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程,联立直角坐标方程求出交点坐标,结合的取值范围进行取舍即可.【详解】因为直线的极坐标方程为,所以直线的普通方程为,又因为曲线的参数方程为(为参数),所以曲线的直角坐标方程为, 联立方程,解得或,因为,所以舍去,故点的直角坐标为.【点睛】本题考查极坐标方程、参数方程与直角坐标方程的互化;考查运算求解能力;熟练掌握极坐标方程、参数方程与直角坐标方程的互化公式是求解本题的关键;属于中档题、常考题型.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁