《江苏省南通市第一2022-2023学年中考联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南通市第一2022-2023学年中考联考数学试卷含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,在中,边上的高是( )ABCD2一元一次不等式组的解集中,整数解的个数是( )A4 B5 C6 D73下列命题中假命题是( )A正六边形的外角和等于B位似图形必定相似C样本
2、方差越大,数据波动越小D方程无实数根4若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A15cm2B24cm2C39cm2D48cm25下列图形中是轴对称图形但不是中心对称图形的是()ABCD6在下列交通标志中,是中心对称图形的是()ABCD7小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:小明家距学校4千米;小明上学所用的时间为12分钟;小明上坡的速度是0.5千
3、米/分钟;小明放学回家所用时间为15分钟其中正确的个数是()A1个B2个C3个D4个8如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD9若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-210如图,RtABC中,ACB90,AB5,AC4,CDAB于D,则tanBCD的值为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11关于x的一元二次方程x2+4xk=0有实数根,则k的取值范围是_12一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_13如图,直线y=x与双曲线y=交于A,B两点,OA=2,点C
4、在x轴的正半轴上,若ACB=90,则点C的坐标为_14对于一元二次方程,根的判别式中的表示的数是_15口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_16如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30,迎水坡的坡度为12,那么坝底的长度等于_米(结果保留根号)三、解答题(共8题,共72分)17(8分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装
5、每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数)18(8分)(5分)计算:19(8分)已知:如图,梯形ABCD中,ADBC,DEAB,与对角线交于点,且FG=EF.(1)求证:四边形是菱形;(2)联结AE,又知ACED,求证: .20(8分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A,连接AB交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(2,)两点(1)C(4,),D(4,),E
6、(4,)三点中,点 是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m2,APB=,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a0)的等角点,且点P位于直线AB的右下方,当APB=60时,求b的取值范围(直接写出结果)21(8分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是求这条直线的函数关系式及点B的坐标在x轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由过线段AB上一点P,作PMx轴,交抛物线于点M,点M在第一象限,点N(0,1),当点
7、M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?22(10分)如图,已知O的直径AB=10,弦AC=6,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E求证:DE是O的切线求DE的长23(12分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为2的等腰三角形ABE,点E在小正方形的顶点上,连接CE,请直接写出线段CE的长24已知:如图,在RtABO中,B=90,OAB=10,OA=1以点O为原点,斜边OA所在直线为x
8、轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据三角形的高线的定义解答【详解】根据高的定义,AF为ABC中BC边上的高故选D【点睛】本题考查了三角形的高的定义,熟记概
9、念是解题的关键2、C【解析】试题分析:解不等式得:,解不等式,得:x5,不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C考点:一元一次不等式组的整数解3、C【解析】试题解析:A、正六边形的外角和等于360,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C考点:命题与定理4、B【解析】试题分析:底面积是:9cm1,底面周长是6cm,则侧面积是:65=15cm1则这个圆锥的全面积为:9+15=14cm1故选B考点:圆锥的计算5、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是
10、轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合6、C【解析】解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C7、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象
11、求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解【详解】解:小明家距学校4千米,正确;小明上学所用的时间为12分钟,正确;小明上坡的速度是千米/分钟,错误;小明放学回家所用时间为3+2+1015分钟,正确;故选:C【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决需注意计算单位的统一8、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决
12、本题的关键是估计的大小.9、C【解析】解:由题意得:,x=1故选C10、D【解析】先求得ABCD,然后根据锐角三角函数的概念求解即可【详解】解:ACB90,AB5,AC4,BC3,在RtABC与RtBCD中,A+B90,BCD+B90ABCDtanBCDtanA,故选D【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值二、填空题(本大题共6个小题,每小题3分,共18分)11、k1【解析】分析:根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论详解:关于x的一元二次方程x2+1x-k=0有实数根,
13、=12-11(-k)=16+1k0,解得:k-1故答案为k-1点睛:本题考查了根的判别式,牢记“当0时,方程有实数根”是解题的关键12、1【解析】设这个正多边的外角为x,则内角为5x,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360外角度数可得边数【详解】设这个正多边的外角为x,由题意得:x+5x=180,解得:x=30,36030=1故答案为:1【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数13、(2,0)【解析】根据直线y=x与双曲线y=交于A,B两点,OA=2,可得AB=2AO=4,再根据RtABC中,OC=AB=2,即可得到点C的
14、坐标【详解】如图所示,直线y=x与双曲线y=交于A,B两点,OA=2,AB=2AO=4,又ACB=90,RtABC中,OC=AB=2,又点C在x轴的正半轴上,C(2,0),故答案为(2,0)【点睛】本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是利用直角三角形斜边上中线的性质得到OC的长14、-5【解析】分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可【详解】解:表示一元二次方程的一次项系数【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值a代表二次项系数,b代表一次项系数,c是常数项15、【解析】
15、先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比16、【解析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长【详解】如图,作,垂足分别为点E,F
16、,则四边形是矩形由题意得,米,米,斜坡的坡度为12,在中,米在RtDCF中,斜坡的坡度为12,米,(米)坝底的长度等于米故答案为【点睛】此题考查了解直角三角形的应用坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义三、解答题(共8题,共72分)17、(1)甲服装的进价为300元、乙服装的进价为1元(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元【解析】(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元根据公式:总利润=总售价-总进价,即可列出方程(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到24
17、2元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242(1+10%)=266.2(元),进而利用不等式求出即可【详解】(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,根据题意得:90%(1+30%)x+90%(1+20%)(500-x)-500=67,解得:x=300,500-x=1答:甲服装的成本为300元、乙服装的成本为1元(2)乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,设每件乙服装进价的平均增长率为y,则,解得:=0.1=10%,=-2.1(不合题意,舍去)答:每件乙服装进价的平均增长率为10%;(3
18、)每件乙服装进价按平均增长率再次上调再次上调价格为:242(1+10%)=266.2(元)商场仍按9折出售,设定价为a元时0.9a-266.20解得:a故定价至少为296元时,乙服装才可获得利润考点:一元二次方程的应用,不等式的应用,打折销售问题18、【解析】试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答试题解析:原式=考点:1实数的运算;2零指数幂;3负整数指数幂;4特殊角的三角函数值19、 (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形再由平行线分线段成比例定理得到:, ,即可得到结论;(2)连接,与交于点
19、由菱形的性质得到,进而得到 ,即有,得到,由相似三角形的性质即可得到结论详解:(1) ,四边形是平行四边形,同理 得:,四边形是菱形(2)连接,与交于点四边形是菱形,得 同理又是公共角,点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质灵活运用菱形的判定与性质是解题的关键20、(1)C(2)(3)b且b2或b【解析】(1)先求出B关于直线x=4的对称点B的坐标,根据A、B的坐标可得直线AB的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A,连AB,交直线l于点P,作BHl于点H,根据对称性可知APG=APG,由AGP=BHP=90可证明AGPBH
20、P,根据相似三角形对应边成比例可得m=根据外角性质可知A=A=,在RtAGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,APB=60时,点P在以AB为弦,所对圆周为60,且圆心在AB下方,若直线y=ax+b(a0)与圆相交,设圆与直线y=ax+b(a0)的另一个交点为Q根据对称性质可证明ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a0)与圆相切,易得P、Q重合,所以直线y=ax+b(a0)过定点Q,连OQ,过点A、Q分别作AMy轴,QNy轴,垂足分别为M、N,可证明AMOONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出
21、直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B(10,),直线AB解析式为:y=,当x=4时,y=,故答案为:C(2)如图,过点A作直线l的对称点A,连AB,交直线l于点P作BHl于点H点A和A关于直线l对称APG=APGBPH=APGAPG=BPHAGP=BHP=90AGPBHP,即,mn=2,即m=,APB=,AP=AP,A=A=,在RtAGP中,tan (3)如图,当点P位于直线AB的右下方,APB=60时,点P在以AB为弦,所对圆周为60,且圆心在AB下方若直线y=ax+b(a0)与圆相交,设圆与直线y=ax+b(a
22、0)的另一个交点为Q由对称性可知:APQ=APQ,又APB=60APQ=APQ=60ABQ=APQ=60,AQB=APB=60BAQ=60=AQB=ABQABQ是等边三角形线段AB为定线段点Q为定点若直线y=ax+b(a0)与圆相切,易得P、Q重合直线y=ax+b(a0)过定点Q连OQ,过点A、Q分别作AMy轴,QNy轴,垂足分别为M、NA(2,),B(2,)OA=OB=ABQ是等边三角形AOQ=BOQ=90,OQ=,AOM+NOD=90又AOM+MAO=90,NOQ=MAOAMO=ONQ=90AMOONQ,,ON=2,NQ=3,Q点坐标为(3,2)设直线BQ解析式为y=kx+b将B、Q坐标代
23、入得 ,解得 ,直线BQ的解析式为:y=,设直线AQ的解析式为:y=mx+n,将A、Q两点代入,解得 ,直线AQ的解析式为:y=3,若点P与B点重合,则直线PQ与直线BQ重合,此时,b=,若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,又y=ax+b(a0),且点P位于AB右下方,b 且b2或b.【点睛】本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.21、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的
24、长度的最大值是1 【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若BAC=90,则AB2+AC2=BC2;若ACB=90,则AB2=AC2+BC2;若ABC=90,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=a2+3a+9,确定二次函数的最值即可【详解】(1)点A是直线与抛物线的交点,且横坐标为-2,,A点的坐标为(-2,1),设直线的函数关系式为y=kx+b,将(0,4),(-2,1)代入得解得yx4直线与抛
25、物线相交,解得:x=-2或x=8,当x=8时,y=16,点B的坐标为(8,16);(2)存在由A(2,1),B(8,16)可求得AB2=325.设点C(m,0),同理可得AC2(m2)212m24m5,BC2(m8)2162m216m320, 若BAC90,则AB2AC2BC2,即325m24m5m216m320,解得m; 若ACB90,则AB2AC2BC2,即325m24m5m216m320,解得m0或m6; 若ABC90,则AB2BC2AC2,即m24m5m216m320325,解得m32, 点C的坐标为(,0),(0,0),(6,0),(32,0) (3)设M(a,a2), 则MN,又点
26、P与点M纵坐标相同,x4a2,x= ,点P的横坐标为,MPa,MN3PMa213(a)a23a9 (a6)21,268,当a6时,取最大值1,当M的横坐标为6时,MN3PM的长度的最大值是122、 (1)详见解析;(2)4.【解析】试题分析:(1)连结OD,由AD平分BAC,OA=OD,可证得ODA=DAE,由平行线的性质可得ODAE,再由DEAC即可得OEDE,即DE是O的切线;(2)过点O作OFAC于点F,由垂径定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四边形OFED是矩形,即可得DE=OF=4.试题解析:(1)连结OD,AD平分BAC,DAE=DAB,OA=OD,ODA=D
27、AO,ODA=DAE,ODAE,DEACOEDEDE是O的切线;(2)过点O作OFAC于点F,AF=CF=3,OF=,OFE=DEF=ODE=90,四边形OFED是矩形,DE=OF=4.考点:切线的判定;垂径定理;勾股定理;矩形的判定及性质.23、作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题24、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范
28、围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30,MPN=60PQA=90,PQPA,AQ=APcos30,S重叠部分=SAPQPQAQ即重叠部分的面积为探究如图
29、2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDAB,OPD=OAB=30,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键