江苏省常州市教育会业水平监测2023届中考四模数学试题含解析.doc

上传人:茅**** 文档编号:88304261 上传时间:2023-04-25 格式:DOC 页数:18 大小:988.50KB
返回 下载 相关 举报
江苏省常州市教育会业水平监测2023届中考四模数学试题含解析.doc_第1页
第1页 / 共18页
江苏省常州市教育会业水平监测2023届中考四模数学试题含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省常州市教育会业水平监测2023届中考四模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省常州市教育会业水平监测2023届中考四模数学试题含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,矩形ABCD的顶点A、C分别在直线a、b上,且ab,1=60,则2的度数为( )A30B45C60D752将某不等式组的解集表示在数轴上,下列表示正确的

2、是( )ABCD3已知点,为是反比例函数上一点,当时,m的取值范围是( )ABCD4如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )A点AB点BC点CD点D5如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为()A7B8C9D106两个一次函数,它们在同一直角坐标系中的图象大致是( )ABCD7若A(4,y1),B(3,y2),C(1,y3)为二次函数yx24x+m的图象上的三点,则y1,y2,y3的大小关系是( )Ay1y2y3 By3y2y1 Cy3y1y2 Dy1y3y28如图所示的图形,是下面哪个正方体的展开图()ABCD9如图

3、,AB为O直径,已知为DCB=20,则DBA为( )A50B20C60D7010语文课程标准规定:79年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著那么260万用科学记数法可表示为()A26105B2.6102C2.6106D260104二、填空题(本大题共6个小题,每小题3分,共18分)11如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 12已知点P(1,2)关于x轴的对称点为P,且P在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 13如图,菱形

4、ABCD中,AB=4,C=60,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60叫一次操作,则经过6次这样的操作菱形中心(对角线的交点)O所经过的路径总长为_14如图,的顶点落在两条平行线上,点D、E、F分别是三边中点,平行线间的距离是8,移动点A,当时,EF的长度是_15点G是三角形ABC的重心,那么 =_16函数中,自变量的取值范围是_三、解答题(共8题,共72分)17(8分)如图,在OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与O交于点E,OB与O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是O的切线;(2)求证:GOCG

5、EF;(3)若AB=4BD,求sinA的值18(8分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨千米)甲库乙库甲库乙库A库20151212B库2520108若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):从甲库运往B库粮食 吨;从乙库运往A库粮食 吨;从乙库运往B库粮食 吨;(2)写出将甲、乙两库粮食运往

6、A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?19(8分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:(1)本次被调查的学生的人数为 ;(2)补全条形统计图(3)扇形统计图中,类所在扇形的圆心角的度数为 ;(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名. 20(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼

7、的窗口C测得教学楼顶部D的仰角为18,教学楼底部B的俯角为20,量得实验楼与教学楼之间的距离AB=30m(1)求BCD的度数(2)求教学楼的高BD(结果精确到0.1m,参考数据:tan200.36,tan180.32)21(8分)如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转后,点落在点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.22(10分)如图,在ABC中,A45,以AB为直径的O经过AC的中点D,E为O上的一点,连接

8、DE,BE,DE与AB交于点F.求证:BC为O的切线;若F为OA的中点,O的半径为2,求BE的长.23(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理(1)填空_,_,数学成绩的中位数所在的等级_(2)如果该校有1200名学生参加了本次模拟测,估计等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数如下分数段整理样本等级等级分数段各组总分人数48435741712根据上表绘制扇形统计图24如图,在ABC中,ACB=90,AC=1sinA=,点D是BC的中点,点P是AB上

9、一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC(1)求证;四边形PBEC是平行四边形;(2)填空:当AP的值为 时,四边形PBEC是矩形;当AP的值为 时,四边形PBEC是菱形参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:过点D作DEa,四边形ABCD是矩形,BAD=ADC=90,3=901=9060=30,ab,DEab,4=3=30,2=5,2=9030=60故选C考点:1矩形;2平行线的性质.2、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“”表示,大于向右小于向左点睛:不等式组的

10、解集为1x,向右画; ,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“”要用空心圆点表示.3、A【解析】直接把n的值代入求出m的取值范围【详解】解:点P(m,n),为是反比例函数y=-图象上一点,当-1n-1时,n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1m1故选A【点睛】此题主要考查了反比例函数图象上点的坐标性质,正确把n的值代入是解题关键4、B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所

11、表示的数的绝对值最小故选B5、C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【详解】根据三视图知,该几何体中小正方体的分布情况如下图所示:所以组成这个几何体的小正方体个数最多为9个,故选C【点睛】考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.6、B【解析】根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解【详解】解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,所以,a、b异号,所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交

12、,B选项符合,D选项,a、b都经过第二、四象限,所以,两直线都与y轴负半轴相交,不符合故选:B【点睛】本题考查了一次函数的图象,一次函数y=kx+b(k0),k0时,一次函数图象经过第一三象限,k0时,一次函数图象经过第二四象限,b0时与y轴正半轴相交,b0时与y轴负半轴相交7、B【解析】根据函数解析式的特点,其对称轴为x=2,A(4,y1),B(3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3y2y1.【详解】抛物线y=x24x+m的对称轴为x=2,当x2时,y随着x的增大而减小,因为-4-312,所以y3y2y1,故选B.【点睛】本题考查了二次函数的

13、性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键.8、D【解析】根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A. 因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B. 因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B ;C .因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D. 因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D ;故选D.【点睛】本题考查了学生的空间想象能

14、力, 解决本题的关键突破口是掌握正方体的展开图特征.9、D【解析】题解析:AB为O直径,ACB=90,ACD=90-DCB=90-20=70,DBA=ACD=70故选D【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径10、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】260万=2600000=故选C【点睛】此题考查科学记数

15、法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值二、填空题(本大题共6个小题,每小题3分,共18分)11、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60,OB=OA=AB=4,OD= OB=2,BD=OBsin60=4=2,B(2,2 ),k=22 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直

16、角三角函数等知识,难度适中12、y=1x+1【解析】由对称得到P(1,2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】点P(1,2)关于x轴的对称点为P,P(1,2),P在直线y=kx+3上,2=k+3,解得:k=1,则y=1x+3,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=1x+1故答案为y=1x+1考点:一次函数图象与几何变换13、【解析】第一次旋转是以点A为圆心,那么菱形中心旋转的半径就是OA,解直角三角形可求出OA的长,圆心角是60第二次还是以点A为圆心,那么菱形中心旋转的半径就是OA,圆心角是60第三次就是以点B为旋转中心,OB为半径,旋转的圆心

17、角为60度旋转到此菱形就又回到了原图故这样旋转6次,就是2个这样的弧长的总长,进而得出经过6次这样的操作菱形中心O所经过的路径总长【详解】解:菱形ABCD中,AB=4,C=60,ABD是等边三角形, BO=DO=2,AO=,第一次旋转的弧长=,第一、二次旋转的弧长和=+=,第三次旋转的弧长为:,故经过6次这样的操作菱形中心O所经过的路径总长为:2(+)=故答案为:【点睛】本题考查菱形的性质,翻转的性质以及解直角三角形的知识14、1【解析】过点D作于点H,根等腰三角形的性质求得BD的长度,继而得到,结合三角形中位线定理求得EF的长度即可【详解】解:如图,过点D作于点H,过点D作于点H,又平行线间

18、的距离是8,点D是AB的中点,在直角中,由勾股定理知,点D是AB的中点,又点E、F分别是AC、BC的中点,是的中位线,故答案是:1【点睛】考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度15、【解析】根据题意画出图形,由,根据三角形法则,即可求得的长,又由点G是ABC的重心,根据重心的性质,即可求得【详解】如图:BD是ABC的中线,=,=,点G是ABC的重心,=,故答案为: 【点睛】本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目16、【解析】根据被开方式是非负数列式求解即可.

19、【详解】依题意,得,解得:,故答案为:【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:当函数解析式是整式时,字母可取全体实数;当函数解析式是分式时,考虑分式的分母不能为0;当函数解析式是二次根式时,被开方数为非负数对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义三、解答题(共8题,共72分)17、 (1)见解析;(2)见解析;(3).【解析】(1)利用等腰三角形的性质,证明OCAB即可;(2)证明OCEG,推出GOCGEF即可解决问题;(3)根据勾股定理和三角函数解答即可【详解】证明:(1)OA=OB,AC=BC,OC

20、AB,O是AB的切线(2)OA=OB,AC=BC,AOC=BOC,OE=OF,OFE=OEF,AOB=OFE+OEF,AOC=OEF,OCEF,GOCGEF,OD=OC,ODEG=OGEF(3)AB=4BD,BC=2BD,设BD=m,BC=2m,OC=OD=r,在RtBOC中,OB2=OC2+BC2,即(r+m)2=r2+(2m)2,解得:r=1.5m,OB=2.5m,sinA=sinB=.【点睛】考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题18、(1)(100x);(1x);(20+x);(2)从甲库运往A库1吨粮食,从

21、甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元【解析】分析:()根据题意解答即可; ()弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”详解:()设从甲库运往A库粮食x吨; 从甲库运往B库粮食(100x)吨; 从乙库运往A库粮食(1x)吨; 从乙库运往B库粮食(20+x)吨; 故答案为(100x);(1x);(20+x) ()依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100x)吨,乙库运往A库(1x)吨,乙库运到B库(20+x)吨 则,解得:0x1 从甲库运往A库粮食x吨时,总运费为:

22、 y=1220x+1025(100x)+1215(1x)+820120(100x) =30x+39000; 从乙库运往A库粮食(1x)吨,0x1,此时100x0,y=30x+39000(0x1) 300,y随x的增大而减小,当x=1时,y取最小值,最小值是2答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”19、 (1)300;(2)见解析;(3)108;(4)约有840名.【解析】(1)根据A种类人数及其占总人数百分比可

23、得答案;(2)用总人数乘以B的百分比得出其人数,即可补全条形图;(3)用360乘以C类人数占总人数的比例可得;(4)总人数乘以C、D两类人数占样本的比例可得答案【详解】解:(1)本次被调查的学生的人数为6923%=300(人),故答案为:300;(2)喜欢B类校本课程的人数为30020%=60(人),补全条形图如下:(3)扇形统计图中,C类所在扇形的圆心角的度数为360=108,故答案为:108;(4)2000=840,估计该校喜爱C,D两类校本课程的学生共有840名【点睛】本题考查条形统计图、扇形统计图的综合运用读懂统计图,从统计图中得到必要的信息是解题关键条形统计图能清楚地表示出每个项目的

24、数据20、(1)38;(2)20.4m【解析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高【详解】(1)过点C作CEBD,则有DCE=18,BCE=20,BCD=DCE+BCE=18+20=38;(2)由题意得:CE=AB=30m,在RtCBE中,BE=CEtan2010.80m,在RtCDE中,DE=CDtan189.60m,教学楼的高BD=BE+DE=10.80+9.6020.4m,则教学楼的高约为20.4m【点睛】本

25、题考查了解直角三角形的应用仰角俯角问题,正确添加辅助线构建直角三角形、熟练掌握和灵活运用相关知识是解题的关键.21、(1)抛物线的解析式为.(2)平移后的抛物线解析式为:.(3)点的坐标为或.【解析】分析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)将原抛物线沿y轴向下平移1个单位后过点C平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意

26、利用方程思想详解: (1)已知抛物线经过,,解得,所求抛物线的解析式为.(2),,可得旋转后点的坐标为.当时,由得,可知抛物线过点.将原抛物线沿轴向下平移1个单位长度后过点.平移后的抛物线解析式为:.(3)点在上,可设点坐标为,将配方得,其对称轴为.由题得(0,1)当时,如图,此时,点的坐标为.当时,如图,同理可得,此时,点的坐标为.综上,点的坐标为或.点睛:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用22、(1)证明见解析;(2)【解析】(1)连接BD,由圆周角性质定理和等腰三角形

27、的性质以及已知条件证明ABC=90即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明AFDEFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,AB为O的直径,BDAC,D是AC的中点,BC=AB,C=A45,ABC=90,BC是O的切线;(2)连接OD,由(1)可得AOD=90,O的半径为2, F为OA的中点,OF=1, BF=3,E=A,AFD=EFB,AFDEFB,即,.【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.23、(1)6;8

28、;B;(2)120人;(3)113分【解析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m、n的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D等级的人数;(3)根据表格中的数据,可以计算出A等级学生的数学成绩的平均分数【详解】(1)本次抽查的学生有:(人),数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:(分),即A等级学生的数学成绩的平均分是113分【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数

29、形结合的思想解答24、证明见解析;(2)9;12.5.【解析】(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)若四边形PBEC是矩形,则APC=90,求得AP即可;若四边形PBEC是菱形,则CP=PB,求得AP即可【详解】点D是BC的中点,BD=CDDE=PD,四边形PBEC是平行四边形;(2)当APC=90时,四边形PBEC是矩形AC=1sinA=,PC=12,由勾股定理得:AP=9,当AP的值为9时,四边形PBEC是矩形;在ABC中,ACB=90,AC=1sinA=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,AB=5x=2当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,当AP的值为12.5时,四边形PBEC是菱形【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁