《江苏省奔牛高级中学2022-2023学年高三最后一卷数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省奔牛高级中学2022-2023学年高三最后一卷数学试卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1圆心为且和轴相切的圆的方程是( )ABCD2南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A1624B1024C1198D15603若直线ykx1与圆x2y21相交于P、Q两点,且POQ120(其中O为坐标原点),则k的值为()A B C或D和4已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为( )
3、ABC0D5一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD6已知向量,则是的( )A充分不必要条件B必要不充分条件C既不充分也不必要条件D充要条件7为计算, 设计了如图所示的程序框图,则空白框中应填入( )ABCD8已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件9已知向量,则向量在向量上的投影是( )ABCD10在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则( )A5BC4D1611已知的面积是, ,则( )A5B或1C5或1D12已
4、知是第二象限的角,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知命题:,那么是_.14已知函数,则曲线在点处的切线方程为_.15已知函数,在区间上随机取一个数,则使得0的概率为 16如图,在梯形中,分别是的中点,若,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知an是一个公差大于0的等差数列,且满足a3a5=45,a2+a6=1(I)求an的通项公式;()若数列bn满足:,求bn的前n项和18(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.19(12分)在中, 角,的对边分别为, 其中, .(1)求角
5、的值;(2)若,为边上的任意一点,求的最小值.20(12分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.求实数的取值范围;求证:.21(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科
6、线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.22(10分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查
7、圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.2、B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,两两作差得:3,4,6,9,13,18,两两作差得:1,2,3,4,5,设该数列为,令,设的前项和为,又令,设的前项和为.易,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.3、C【解析】直线过定点,直线y=kx+1与圆x2+y2=1相交于P、Q两点,且POQ=12
8、0(其中O为原点),可以发现QOx的大小,求得结果【详解】如图,直线过定点(0,1),POQ=120OPQ=30,1=120,2=60,由对称性可知k=故选C【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题4、C【解析】先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小
9、值,利用了导数求解,考查了转化思想和运算能力,属于难题.5、B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体6、A【解析】向量,则,即,或者-1,判断出即可【详解】解:向量,则,即,或者-1,所以是或者的充分不必要条件,故选:A【点睛】本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.7、A【解析】根据程序框图输出的S的值即可得到空白框中应填入的内容【详解】由程序框图的运行,可得:S0,i0满足判断框内的条件,执行循环体,a1,S1,i1满足判断框内的条
10、件,执行循环体,a2(2),S1+2(2),i2满足判断框内的条件,执行循环体,a3(2)2,S1+2(2)+3(2)2,i3观察规律可知:满足判断框内的条件,执行循环体,a99(2)99,S1+2(2)+3(2)2+1(2)99,i1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i1故选:A【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题8、A【解析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件
11、.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.9、A【解析】先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.10、C【解析】根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【详解】中,由正弦定理得,又,又,又,.,由余弦定理可得,可得.故选:C【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.11、B
12、【解析】,,若为钝角,则,由余弦定理得,解得;若为锐角,则,同理得.故选B.12、D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、真命题【解析】由幂函数的单调性进行判断即可.【详解】已知命题:,因为在上单调递增,则,所以是真命题,故答案为:真命题【点睛】本题主要考查了判断全称命题的真假,属于基础题.14
13、、【解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】因为,所以,又故切线方程为,整理为,故答案为:【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.15、【解析】试题分析:可以得出,所以在区间上使的范围为,所以使得0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.16、【解析】建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以
14、,由,得,即,又,所以,故,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);()【解析】()设等差数列的公差为,则依题设由,可得由,得,可得所以可得()设,则.即,可得,且所以,可知所以,所以数列是首项为4,公比为2的等比数列所以前项和考点:等差数列通项公式、用数列前项和求数列通项公式18、(1);(2)【解析】(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等
15、比数列,且首项为,公比为.故 (2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.19、(1);(2).【解析】(1)利用余弦定理和二倍角的正弦公式,化简即可得出结果;(2)在中, 由余弦定理得,在中结合正弦定理求出,从而得出,即可得出的解析式,最后结合斜率的几何意义,即可求出的最小值.【详解】(1) ,由题知,则,则,;(2)在中, 由余弦定理得,设, 其中.在中,所以,所以的几何意义为两点连线斜率的相反数,数形结合可得,故的最小值为.【点睛】本题考查正弦定理和余弦定理的实际应用,还涉及二倍角正弦公式和诱导公式,考查计算能力.20、(1
16、);(2);详见解析.【解析】(1)由函数在处的切线与直线垂直,即可得,对其求导并表示,代入上述方程即可解得答案;(2)已知要求等价于在上有两个根,且,即在上有两个不相等的根,由二次函数的图象与性质构建不等式组,解得答案,最后分析此时单调性推及极值说明即可;由可知,是方程的两个不等的实根,由韦达定理可表达根与系数的关系,进而用含的式子表示,令,对求导分析单调性,即可知道存在常数使在上单调递减,在上单调递增,进而求最值证明不等式成立.【详解】解:(1)依题意,故,所以,据题意可知,解得.所以实数的值为.(2)因为函数在定义域上有两个极值点,且,所以在上有两个根,且,即在上有两个不相等的根.所以解
17、得.当时,若或,函数在和上单调递增;若,函数在上单调递减,故函数在上有两个极值点,且.所以,实数的取值范围是.由可知,是方程的两个不等的实根,所以其中.故,令,其中.故,令,在上单调递增.由于,所以存在常数,使得,即,且当时,在上单调递减;当时,在上单调递增,所以当时,又,所以,即,故得证.【点睛】本题考查导数的几何意义、两直线的位置关系、由极值点个数求参数范围问题,还考查了利用导数证明不等式成立,属于难题.21、 (1)60%;(2) (i)0.12 (ii) 【解析】(1)利用上线人数除以总人数求解;(2)(i)利用二项分布求解;(ii)甲、乙两市上线人数分别记为X,Y,得,.,利用期望公
18、式列不等式求解【详解】(1)估计本科上线率为.(2)(i)记“恰有8名学生达到本科线”为事件A,由图可知,甲市每个考生本科上线的概率为0.6,则. (ii)甲、乙两市2020届高考本科上线人数分别记为X,Y,依题意,可得,. 因为2020届高考本科上线人数乙市的均值不低于甲市,所以,即, 解得,又,故p的取值范围为.【点睛】本题考查二项分布的综合应用,考查计算求解能力,注意二项分布与超几何分布是易混淆的知识点.22、(1)见解析;(2)【解析】(1)设,注意到在上单增,再利用零点存在性定理即可解决;(2)函数在上单调递减,则在恒成立,即在上恒成立,构造函数,求导讨论的最值即可.【详解】(1)由已知,所以,设,当时,单调递增,而,且在上图象连续不断.所以在上有唯一零点,当时,;当时,;在单调递减,在单调递增,故在区间上存在唯一的极小值点,即在区间上存在唯一的极小值点;(2)设,在单调递增,即,从而,因为函数在上单调递减,在上恒成立,令,在上单调递减,当时,则在上单调递减,符合题意.当时,在上单调递减,所以一定存在,当时,在上单调递增,与题意不符,舍去.综上,的取值范围是【点睛】本题考查利用导数研究函数的极值点、不等式恒成立问题,在处理恒成立问题时,通常是构造函数,转化成函数的最值来处理,本题是一道较难的题.