《楚雄州双柏县2022-2023学年中考试题猜想数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《楚雄州双柏县2022-2023学年中考试题猜想数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列判断错误的是( )A对角线相等的四边形是矩形B对角线相互垂直平分的四边形是菱形C对角线相互垂直且相等的平行四边形是正方形D对角线相互平分的四边形是平行四边形2如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x
2、-2,那么符合条件的所有整数a的积是 ( )A-3B0C3D93甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示下列说法:a=40;甲车维修所用时间为1小时;两车在途中第二次相遇时t的值为5.25;当t=3时,两车相距40千米,其中不正确的个数为()A0个B1个C2个D3个4在平面直角坐标系xOy中
3、,将一块含有45角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为()A(,0)B(2,0)C(,0)D(3,0)5已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD6一次函数y=kx1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A(5,3)B(1,3)C(2,2)D(5,1)7在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的
4、“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了如计算89时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则89=107+2=1那么在计算67时,左、右手伸出的手指数应该分别为( )A1,2B1,3C4,2D4,38某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A0.69106B6.9107C69108D6.91079下列各式计算正确的是()Aa4a3=a12B3a4a=12aC(a3)4=a12Da12a3=a410将一把直尺与一块三角板如图所示放置,若则2的度数为( )A5
5、0B110C130D150二、填空题(共7小题,每小题3分,满分21分)11如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_12一个n边形的每个内角都为144,则边数n为_13如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cosEFC的值是 14如图,已知直线y=x+4与双曲线y=(x0)相交于A、B两点,与x轴、y轴分别相交于D、C两点,若AB=2,则k=_15如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上
6、,则旋转角度为_16不等式组的解集是_;17如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ给出如下结论:DQ1;SPDQ;cosADQ=其中正确结论是_(填写序号)三、解答题(共7小题,满分69分)18(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;19(5分)凯里市某文具店某种型号的计算器每只进价12元,售价2
7、0元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1(1810)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元求一次至少购买多少只计算器,才能以最低价购买?求写出该文具店一次销售x(x10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10x50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多
8、少?20(8分)如图,AB为O的直径,点C,D在O上,且点C是的中点,过点 C作AD的垂线 EF交直线 AD于点 E(1)求证:EF是O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长21(10分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图和图,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为 ,图中m的值为 ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥
9、有3台移动设备的学生人数22(10分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中16月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台若今
10、年2月份这种品牌手机的销售额为6400万元,求m的值23(12分)已知四边形ABCD是O的内接四边形,AC是O的直径,DEAB,垂足为E(1)延长DE交O于点F,延长DC,FB交于点P,如图1求证:PC=PB;(2)过点B作BGAD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2若AB= ,DH=1,OHD=80,求BDE的大小24(14分)(1)计算:()1+(2018)04cos30(2)解不等式组:,并把它的解集在数轴上表示出来参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形
11、的判定定理分别对每个选项进行判断后即可确定正确的选项【详解】解:、对角线相等的四边形是矩形,错误;、对角线相互垂直平分的四边形是菱形,正确;、对角线相互垂直且相等的平行四边形是正方形,正确;、对角线相互平分的四边形是平行四边形,正确;故选:【点睛】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大2、D【解析】解:,由得:x2a+4,由得:x2,由不等式组的解集为x2,得到2a+42,即a3,分式方程去分母得:a3x3=1x,把a=3代入整式方程得:3x6=1x,即,符合题意;把a=2代入整式方程得:3x5=1x,即x=3,不合题意;把a=1代入整式方程得:3x4=
12、1x,即,符合题意;把a=0代入整式方程得:3x3=1x,即x=2,不合题意;把a=1代入整式方程得:3x2=1x,即,符合题意;把a=2代入整式方程得:3x1=1x,即x=1,不合题意;把a=3代入整式方程得:3x=1x,即,符合题意;把a=4代入整式方程得:3x+1=1x,即x=0,不合题意,符合条件的整数a取值为3;1;1;3,之积为1故选D3、A【解析】解:由函数图象,得a=1203=40,故正确,由题意,得5.53120(402),=2.51.5,=1甲车维修的时间为1小时;故正确,如图:甲车维修的时间是1小时,B(4,120)乙在甲出发2小时后匀速前往B地,比甲早30分钟到达E(5
13、,240)乙行驶的速度为:2403=80,乙返回的时间为:24080=3,F(8,0)设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,解得,y1=80t200,y2=80t+640,当y1=y2时,80t200=80t+640,t=5.2两车在途中第二次相遇时t的值为5.2小时,故弄正确,当t=3时,甲车行的路程为:120km,乙车行的路程为:80(32)=80km,两车相距的路程为:12080=40千米,故正确,故选A4、C【解析】过点B作BDx轴于点D,易证ACOBCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知
14、平移的单位长度,从而求出C的对应点【详解】解:过点B作BDx轴于点D,ACO+BCD90,OAC+ACO90,OACBCD,在ACO与BCD中, ACOBCD(AAS)OCBD,OACD,A(0,2),C(1,0)OD3,BD1,B(3,1),设反比例函数的解析式为y,将B(3,1)代入y,k3,y,把y2代入y,x,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故选:C【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型5、D【解析】先根据三角形的周
15、长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D6、C【解析】【分析】根据函数图象的性质判断系数k0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论【详解】一次函数y=kx1的图象的y的值随x值的增大而增大,k0,A、把点(5,3)代入y=kx1得到:k=0,不符
16、合题意;B、把点(1,3)代入y=kx1得到:k=20,不符合题意;C、把点(2,2)代入y=kx1得到:k=0,符合题意;D、把点(5,1)代入y=kx1得到:k=0,不符合题意,故选C【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k0是解题的关键7、A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为310=30,30+43=42,故选A点评:此题是定义新运算题型通过阅读规则,得出一般结论解题关键是对号入座不要找错对应关系8、B【解析】试题解析:0.00 000 069=6.910-7,故选B点
17、睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定9、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D【详解】Aa4a3=a7,故A错误;B3a4a=12a2,故B错误;C(a3)4=a12,故C正确;Da12a3=a9,故D错误故选C【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键10、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【详解】EFGH,FC
18、D=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据,只要求出、即可解决问题;【详解】四边形是平行四边形,.故答案为.【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.12、10【解析】解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36,因为多边形的外角和是360,所以这个多边形的边数等于36036=10,故答案为:1013、.【解析】试题分析:根据
19、翻转变换的性质得到AFE=D=90,AF=AD=5,根据矩形的性质得到EFC=BAF,根据余弦的概念计算即可由翻转变换的性质可知,AFE=D=90,AF=AD=5,EFC+AFB=90,B=90,BAF+AFB=90,EFC=BAF,cosBAF=,cosEFC=,故答案为:考点:轴对称的性质,矩形的性质,余弦的概念.14、-3【解析】设A(a, a+4),B(c, c+4),则解得: x+4=,即x2+4xk=0,直线y=x+4与双曲线y=相交于A、B两点,a+c=4,ac=-k,(ca)2=(c+a)24ac=16+4k,AB=,由勾股定理得:(ca)2+c+4(a+4)2=()2,2 (
20、ca)2=8,(ca)2=4,16+4k =4,解得:k=3,故答案为3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.15、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60,旋转角为60故答案为60.16、9x1【解析】分别求出两个不等式的解集,再求其公共解集【详解】,解不等式,得:x-1,解不等式,得:x-9,所以不等式组的解集为:-9x-1,故答案为:-9x-1【点睛】本题考查
21、一元一次不等式组的解法,属于基础题求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了17、【解析】连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1;连接AQ,如图4,根据勾股定理可求出BP易证RtAQBRtBCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求出QH,从而可求出SDPQ的值;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,把AN=
22、1-DN代入,即可求出DN,然后在RtDNQ中运用三角函数的定义,就可求出cosADQ的值【详解】解:连接OQ,OD,如图1易证四边形DOBP是平行四边形,从而可得DOBP结合OQ=OB,可证到AOD=QOD,从而证到AODQOD,则有DQ=DA=1故正确;连接AQ,如图4则有CP=,BP=易证RtAQBRtBCP,运用相似三角形的性质可求得BQ=,则PQ=,故正确;过点Q作QHDC于H,如图4易证PHQPCB,运用相似三角形的性质可求得QH=,SDPQ=DPQH=故错误;过点Q作QNAD于N,如图3易得DPNQAB,根据平行线分线段成比例可得,则有,解得:DN=由DQ=1,得cosADQ=故
23、正确综上所述:正确结论是故答案为:【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用三、解答题(共7小题,满分69分)18、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案
24、;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件19、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大【解析】试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元
25、,而最低价为每只16元,因此得到300.1(x10)=16,解方程即可求解;(3)由于根据(1)得到x1,又一次销售x(x10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=,然后可以得到函数的增减性,再结合已知条件即可解决问题试题解析:(1)设一次购买x只,则300.1(x10)=16,解得:x=1答:一次至少买1只,才能以最低价购买;(3)当10x1时,y=300.1(x10)13x=,当x1时,y=(1613)x=4x;综上所述:;(3)y=,当10x45时,y随x的增大而增大,即当卖的只数越多时,利润更大当45x1时,y随x的增大而
26、减小,即当卖的只数越多时,利润变小且当x=46时,y1=303.4,当x=1时,y3=3y1y3即出现了卖46只赚的钱比卖1只赚的钱多的现象当x=45时,最低售价为300.1(4510)=16.5(元),此时利润最大故店家一次应卖45只,最低售价为16.5元,此时利润最大考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论20、(1)证明见解析(2)【解析】(1)连接OC,根据等腰三角形的性质、平行线的判定得到OCAE,得到OCEF,根据切线的判定定理证明;(2)根据勾股定理求出AC,证明AECACB,根据相似三角形的性质列出比例式,计算即可【详解】(1)证明:连接OC,OA=O
27、C,OCA=BAC,点C是的中点,EAC=BAC,EAC=OCA,OCAE,AEEF,OCEF,即EF是O的切线;(2)解:AB为O的直径,BCA=90,AC=4,EAC=BAC,AEC=ACB=90,AECACB,AE=【点睛】本题考查的是切线的判定、圆周角定理以及相似三角形的判定和性质,掌握切线的判定定理、直径所对的圆周角是直角是解题的关键21、()50、31;()4;3;3.1;()410人【解析】()利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;()根据众数、中位数、加权平均数的定义计算即可;()将样本中拥有3台
28、移动设备的学生人数所占比例乘以总人数1500即可求解【详解】解:()本次接受随机抽样调查的学生人数为: 50(人),10031%,图中m的值为31.故答案为50、31;()这组样本数据中,4出现了16次,出现次数最多,这组数据的众数为4;将这组数据从小到大排列,其中处于中间的两个数均为3,有3,这组数据的中位数是3;由条形统计图可得3.1,这组数据的平均数是3.1()150018%410(人)答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项
29、目的数据;扇形统计图直接反映部分占总体的百分比大小22、(1)p0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1【解析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量售价销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可【详解】(1)设pkx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得: 解得:,p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w(50x+2600)(0.
30、1x+3.8)5x2+70x+98805(x7)2+10125,当x7时,w最大10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x12时,y100,p5,1月份的售价为:100(1m%)元,则2月份的售价为:0.8100(1m%)元;1月份的销量为:5(11.5m%)万台,则2月份的销量为:5(11.5m%)+1.5万台;0.8100(1m%)5(11.5m%)+1.56400,解得:m1%(舍去),m2%,m=1,答:m的值为1【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键23、(1)详见解析
31、;(2)BDE=20【解析】(1)根据已知条件易证BCDF,根据平行线的性质可得F=PBC;再利用同角的补角相等证得F=PCB,所以PBC=PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在RtABC中,用锐角三角函数求出ACB=60,进而判断出DH=OD,求出ODH=20,再求得NOH=DOC=40,根据三角形外角的性质可得OAD=DOC=20,最后根据圆周角定理及平行线的性质即可求解【详解】(1)如图1,AC是O的直径,ABC=90,DEAB,DEA=90,DEA=ABC,BCDF,F=PBC,四边形BCDF是圆内接四边形
32、,F+DCB=180,PCB+DCB=180,F=PCB,PBC=PCB,PC=PB;(2)如图2,连接OD,AC是O的直径,ADC=90,BGAD,AGB=90,ADC=AGB,BGDC,BCDE,四边形DHBC是平行四边形,BC=DH=1,在RtABC中,AB=,tanACB=,ACB=60,BC=AC=OD,DH=OD,在等腰DOH中,DOH=OHD=80,ODH=20,设DE交AC于N,BCDE,ONH=ACB=60,NOH=180(ONH+OHD)=40,DOC=DOHNOH=40,OA=OD,OAD=DOC=20,CBD=OAD=20,BCDE,BDE=CBD=20【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得ODH=20是解决本题的关键.24、 (1)-3;(2).【解析】分析:(1)代入30角的余弦函数值,结合零指数幂、负整数指数幂的意义及二次根式的相关运算法则计算即可;(2)按照解一元一次不等式组的一般步骤解答,并把解集规范的表示到数轴上即可.(1)原式= = -3.(2) 解不等式得: ,解不等式得:,不等式组的解集为:不等式组的解集在数轴上表示:点睛:熟记零指数幂的意义:,(,为正整数)即30角的余弦函数值是本题解题的关键.