《江苏省南通市海安县南莫中学2023年高三二诊模拟考试数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南通市海安县南莫中学2023年高三二诊模拟考试数学试卷含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数 (i为虚数单位)的共轭复数是A1+iB1iC1+iD1i2已知函数为奇函数,则( )AB1C2D33设,则( )ABCD4一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )ABCD5如图,在直角梯形A
2、BCD中,ABDC,ADDC,ADDC2AB,E为AD的中点,若,则的值为()A BCD6执行下面的程序框图,若输出的的值为63,则判断框中可以填入的关于的判断条件是( )ABCD7在中,在边上满足,为的中点,则( ).ABCD8设,且,则( )ABCD9已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为( )A3B2CD10用一个平面去截正方体,则截面不可能是( )A正三角形B正方形C正五边形D正六边形11我国古代数学著作九章算术有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,
3、芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD12已知中,则( )A1BCD二、填空题:本题共4小题,每小题5分,共20分。13在中,则绕所在直线旋转一周所形成的几何体的表面积为_.14已知非零向量的夹角为,且,则_.15已知函数f(x)=axlnxbx(a,bR)在点(e,f(e)处的切线方程为y=3xe,则a+b=_.16已知全集,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,点,直
4、线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值18(12分)如图,在四棱锥中,侧棱底面,是棱中点.(1)已知点在棱上,且平面平面,试确定点的位置并说明理由;(2)设点是线段上的动点,当点在何处时,直线与平面所成角最大?并求最大角的正弦值.19(12分)设椭圆E:(a,b0)过M(2,) ,N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理
5、由20(12分)已知椭圆的离心率为,且过点()求椭圆的方程;()设是椭圆上且不在轴上的一个动点,为坐标原点,过右焦点作的平行线交椭圆于、两个不同的点,求的值21(12分)选修4-5:不等式选讲设函数(1) 证明:;(2)若不等式的解集非空,求的取值范围22(10分)市民小张计划贷款60万元用于购买一套商品住房,银行给小张提供了两种贷款方式.等额本金:每月的还款额呈递减趋势,且从第二个还款月开始,每月还款额与上月还款额的差均相同;等额本息:每个月的还款额均相同.银行规定,在贷款到账日的次月当天开始首次还款(若2019年7月7日贷款到账,则2019年8月7日首次还款).已知小张该笔贷款年限为20年
6、,月利率为0.004.(1)若小张采取等额本金的还款方式,现已得知第一个还款月应还4900元,最后一个还款月应还2510元,试计算小张该笔贷款的总利息;(2)若小张采取等额本息的还款方式,银行规定,每月还款额不得超过家庭平均月收入的一半,已知小张家庭平均月收入为1万元,判断小张该笔贷款是否能够获批(不考虑其他因素);(3)对比两种还款方式,从经济利益的角度来考虑,小张应选择哪种还款方式.参考数据:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:化简已知复数z,由共轭复数的定义可得详解:化简可得z= z的共轭复数
7、为1i.故选B点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题2、B【解析】根据整体的奇偶性和部分的奇偶性,判断出的值.【详解】依题意是奇函数.而为奇函数,为偶函数,所以为偶函数,故,也即,化简得,所以.故选:B【点睛】本小题主要考查根据函数的奇偶性求参数值,属于基础题.3、D【解析】结合指数函数及对数函数的单调性,可判断出,即可选出答案.【详解】由,即,又,即,即,所以.故选:D.【点睛】本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.4、A【解析】求出满足条件的正的面积,再求出满足条件的正内的点到顶点、的距离均不小于的图形的面积,然后代入几何概型的
8、概率公式即可得到答案【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题5、B【解析】建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB1,则CDAD2,所以C(2,0),A(0,2),B(1,2),E(0,1), (2,2)(2,1)(1,2),解得则.故选:B【点睛】本题主要考查了由平面
9、向量线性运算的结果求参数,属于中档题.6、B【解析】根据程序框图,逐步执行,直到的值为63,结束循环,即可得出判断条件.【详解】执行框图如下:初始值:,第一步:,此时不能输出,继续循环;第二步:,此时不能输出,继续循环;第三步:,此时不能输出,继续循环;第四步:,此时不能输出,继续循环;第五步:,此时不能输出,继续循环;第六步:,此时要输出,结束循环;故,判断条件为.故选B【点睛】本题主要考查完善程序框图,只需逐步执行框图,结合输出结果,即可确定判断条件,属于常考题型.7、B【解析】由,可得,再将代入即可.【详解】因为,所以,故.故选:B.【点睛】本题考查平面向量的线性运算性质以及平面向量基本
10、定理的应用,是一道基础题.8、C【解析】将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】 即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.9、C【解析】设射线OA与x轴正向所成的角为,由三角函数的定义得,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.10、C【解析】试题分析:画出截面图形如图显然A正三角形,B正方形:D正六边形,可以画出五边形但不是正五边形;故选C考点:平面的基本性质及推论11
11、、C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题12、C【解析】以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知
12、该旋转体为两个倒立的圆锥底对底组合在一起,在中,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于基础题.14、1【解析】由已知条件得出,可得,解之可得答案.【详解】向量的夹角为,且,可得:,可得,解得,故答案为:1.【点睛】本题考查根据向量的数量积运算求向量的模,关键在于将所求的向量的模平方,利用向量的数量积化简求解即可,属于基础题.15、0【解析】由题意,列方程组可求,即求.【详解】在点处的切线方程为,代入得.又.联立解得:.故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、【解析】利用集合的补集运算即可求解.【详
13、解】由全集,所以.故答案为:【点睛】本题考查了集合的补集运算,需理解补集的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)在已知极坐标方程两边同时乘以后,利用cosx,siny,2x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x24y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得【详解】解:(1)在+cos28sin中两边同时乘以得2+2(cos2sin2)8sin,x2+y2+x2y28y,即x24y,所以曲线C的直角坐标方程为:x24y(2)联立直线l的参数方程与x24y得:(cos)
14、2t24(sin)t+40,设A,B两点对应的参数分别为t1,t2,由16sin216cos20,得sin,t1+t2,由|PM|,所以20sin2+9sin200,解得sin或sin(舍去),所以sin【点睛】本题考查了简单曲线的极坐标方程,属中档题18、(1)为中点,理由见解析;(2)当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【解析】(1)为中点,可利用中位线与平行四边形性质证明,从而证明平面平面;(2)以A为原点,分别以,所在直线为、轴建立空间直角坐标系,利用向量法求出当点在线段靠近的三等分点时,直线与平面所成角最大,并可求出最大角的正弦值.【详解】(1)为中点,
15、证明如下:分别为中点,又平面平面平面 又,且四边形为平行四边形,同理,平面,又 平面平面(2)以A为原点,分别以,所在直线为、轴建立空间直角坐标系则, 设直线与平面所成角为,则取平面的法向量为则令,则所以 当时,等号成立即当点在线段靠近的三等分点时,直线与平面所成角最大,最大角的正弦值.【点睛】本题主要考查了平面与平面的平行,直线与平面所成角的求解,考查了学生的直观想象与运算求解能力.19、(1)(2)【解析】试题分析:(1)因为椭圆E:(a,b0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆
16、的切线方程为解方程组得,即,则=,即,要使,需使,即,所以,所以又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,圆与椭圆的位置关系点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理存在性问题,往往从假设存在出发,运用题中条件探寻得到存在的是否条件具备(2)小题解答中,集合韦达定理,应用平面向量知识证明了圆的存在性20、()()1【解
17、析】()由题,得,解方程组,即可得到本题答案;()设直线,则直线,联立,得,联立,得,由此即可得到本题答案.【详解】()由题可得,即,将点代入方程得,即,解得,所以椭圆的方程为:;()由()知, 设直线,则直线,联立,整理得,所以,联立,整理得,设,则,所以,所以【点睛】本题主要考查椭圆标准方程的求法以及直线与椭圆的综合问题,考查学生的运算求解能力.21、 (1)见解析.(1) .【解析】试题分析:(1)直接计算,由绝对值不等式的性质及基本不等式证之即可;(1),分区间讨论去绝对值符号分别解不等式即可.试题解析: (1)证明:函数f(x)=|xa|,a2,则f(x)+f()=|xa|+|a|=
18、|xa|+|+a|(xa)+(+a)|=|x+|=|x|+1=1(1)f(x)+f(1x)=|xa|+|1xa|,a2当xa时,f(x)=ax+a1x=1a3x,则f(x)a;当ax时,f(x)=xa+a1x=x,则f(x)a;当x时,f(x)=xa+1xa=3x1a,则f(x)则f(x)的值域为,+).不等式f(x)+f(1x)的解集非空,即为,解得,a1,由于a2,则a的取值范围是考点:1.含绝对值不等式的证明与解法.1.基本不等式.22、(1)289200元;(2)能够获批;(3)应选择等额本金还款方式【解析】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,即可由等差
19、数列的前n项和公式求得其还款总额,减去本金即为还款的利息;(2)根据题意,采取等额本息的还款方式,每月还款额为一等比数列,设小张每月还款额为元,由等比数列求和公式及参考数据,即可求得其还款额,与收入的一半比较即可判断;(3)计算出等额本息还款方式时所付出的总利息,两个利息比较即可判断.【详解】(1)由题意可知,等额本金还款方式中,每月的还款额构成一个等差数列,记为,表示数列的前项和,则,则,故小张该笔贷款的总利息为元.(2)设小张每月还款额为元,采取等额本息的还款方式,每月还款额为一等比数列,则,所以,即,因为,所以小张该笔贷款能够获批.(3)小张采取等额本息贷款方式的总利息为:,因为,所以从经济利益的角度来考虑,小张应选择等额本金还款方式.【点睛】本题考查了等差数列与等比数列求和公式的综合应用,数列在实际问题中的应用,理解题意是解决问题的关键,属于中档题.