《江苏省兴华市四校2022-2023学年中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省兴华市四校2022-2023学年中考数学四模试卷含解析.doc(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1方程x23x0的根是( )Ax0Bx3C,D,2在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )ABCD3如图1,在ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设A
2、P=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )APDBPBCPEDPC4据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A25和30B25和29C28和30D28和295下列各数:1.414,0,其中是无理数的为( )A1.414BCD06用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm7多项式ax24ax12a
3、因式分解正确的是( )Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12)Da(x+6)(x2)8如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,大正方形与小正方形的边长之比是21,若随机在大正方形及其内部区域投针,则针孔扎到小正方形(阴影部分)的概率是( )A0.2B0.25C0.4D0.59如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )Ax-2或x2Bx-2或0x2C-2x0或0x2D-2x0或x210一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是()A120B135C150D
4、16511的值为( )AB-C9D-912如图,AB是O的直径,弦CDAB于E,CDB=30,O的半径为,则弦CD的长为( )AB3cmCD9cm二、填空题:(本大题共6个小题,每小题4分,共24分)13已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为_14如图,在平面直角坐标系中,已知C(1,),ABC与DEF位似,原点O是位似中心,要使DEF的面积是ABC面积的5倍,则点F的坐标为_15已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果ab0,那么y1与y2的大小关系是:y1_y2;16若am=5,an=6
5、,则am+n=_17化简二次根式的正确结果是_18若正多边形的一个外角是45,则该正多边形的边数是_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,再求值:(-),其中20(6分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30方向8km处,位于景点B的正北方向,还位于景点C的北偏西75方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长(结果精确到0.1km)求景点C与景点D之间的距离(结果精确到
6、1km)21(6分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“”表示被污损的数据)请解答下列问题:成绩分组频数频率50x6080.1660x7012a70x800.580x9030.0690x100bc合计1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的
7、概率22(8分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则 即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒
8、米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数: ,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算: 某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正
9、整数幂.请直接写出所有满足条件的软件激活码正整数的值.23(8分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?24(10分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“
10、求助”可以让主持人去掉其中一题的一个错误选项)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率从概率的角度分析,你建议小明在第几题使用“求助”(直接写出答案)25(10分)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:DAEECD26(12分)如图,在平行四边形ABCD中,BD是对角线,ADB=90,E、F分别为边AB、CD的中点(1)求证:四边形DEBF是菱形;(2)若BE=4,DEB=120,点M为BF的中点,当点P在BD边上运动时,
11、则PF+PM的最小值为 ,并在图上标出此时点P的位置27(12分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【
12、解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键2、A【解析】函数一次函数的图像及性质3、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EPAC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中
13、的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图4、D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,这组数据的中位数是28,在这组数据中,29出现的次数最多,这组数据的众数是29,故选D【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5、B【解析】试题分析:根据无理数的定义可得是无理数
14、故答案选B.考点:无理数的定义.6、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详解】原正方形的周长为acm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选B【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式7、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解:ax24ax12a=a(x24x12)=a(x6)(x+2)故答案为a(x6)(x+2)点评:此题主要考查了提取公因
15、式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键8、B【解析】设大正方形边长为2,则小正方形边长为1,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是0.1【详解】解:设大正方形边长为2,则小正方形边长为1,因为面积比是相似比的平方,所以大正方形面积为4,小正方形面积为1,则针孔扎到小正方形(阴影部分)的概率是;故选:B【点睛】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率9、D【解析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论【详解】解:反比例函数与正比
16、例函数的图象均关于原点对称,A、B两点关于原点对称,点A的横坐标为1,点B的横坐标为-1,由函数图象可知,当-1x0或x1时函数y1=k1x的图象在的上方,当y1y1时,x的取值范围是-1x0或x1故选:D【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1y1时x的取值范围是解答此题的关键10、C【解析】这个扇形的圆心角的度数为n,根据弧长公式得到20=,然后解方程即可【详解】解:设这个扇形的圆心角的度数为n,根据题意得20=,解得n=150,即这个扇形的圆心角为150故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)11、A【解析】
17、【分析】根据绝对值的意义进行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为 ,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.12、B【解析】解:CDB=30,COB=60,又OC=,CDAB于点E,解得CE=cm,CD=3cm故选B考点:1垂径定理;2圆周角定理;3特殊角的三角函数值二、填空题:(本大题共6个小题,每小题4分,共24分)13、-2【解析】试题分析:根据题意可得2k+32,k2,解得k2因k为整数,所以k=2考点:一次函数图象与系数的关系14、(,)【解析】根据相似三角形的性质求出相似比,根据位似变换的性质
18、计算即可【详解】解:ABC与DEF位似,原点O是位似中心,要使DEF的面积是ABC面积的5倍,则DEF的边长是ABC边长的倍,点F的坐标为(1,),即(,),故答案为:(,)【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k15、【解析】根据反比例函数的性质求解【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而ab0,所以y1y2故答案为:【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy
19、=k也考查了反比例函数的性质16、1【解析】根据同底数幂乘法性质aman=am+n,即可解题.【详解】解:am+n= aman=56=1.【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键.17、a【解析】 , . .18、1;【解析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用36045可求得边数【详解】多边形外角和是360度,正多边形的一个外角是45,36045=1即该正多边形的边数是1【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等)三、解答题:(本大题共9个小题,共78分,解答应写出文字说
20、明、证明过程或演算步骤19、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案详解:原式= 将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型解决这个问题的关键就是就是将括号里面的分式进行化成同分母20、(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km【解析】解:(1)如图,过点D作DEAC于点E,过点A作AFDB,交DB的延长线于点F,在RtDAF中,ADF=30,AF=AD=8=4,DF=,在RtABF中BF=3,BD=DFBF=43,si
21、nABF=,在RtDBE中,sinDBE=,ABF=DBE,sinDBE=,DE=BDsinDBE=(43)=3.1(km),景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知CDB=75,由(1)可知sinDBE=0.8,所以DBE=53,DCB=1807553=52,在RtDCE中,sinDCE=,DC=4(km),景点C与景点D之间的距离约为4km21、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人. 【解析】(1)利用50x60的频数和频率,根据公式:频率频数总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,
22、根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:80.16=50(名)a=1250=0.24,70x80的人数为:500.5=25(名)b=50812253=2(名)c=250=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:10000.6=600(人)这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学
23、共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,抽取的2名同学来自同一组的概率P=【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率所求情况数与总情况数之比22、(1)3;(2);(3)【解析】设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.参照题目中的解题方法进行
24、计算即可.由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂只需将-2-n消去即可,分别分别即可求得N的值【详解】设塔的顶层共有盏灯,由题意得.解得,顶层共有盏灯.设, ,即: .即由题意可知:20第一项,20,21第二项,20,21,22第三项,20,21,22,2n1第n项,根据等比数列前n项和公式,求得每项和分别为: 每项含有的项数为:1,2,3,n,总共的项数为 所有项数的和为 由题意可知:为2的整数幂,只需将2n消去即可,则1+2+(2n)=0,解得:n=1,总共有,不满足N10,1+2+4+(2n)=0,解得:n=5,总共有 满足,1
25、+2+4+8+(2n)=0,解得:n=13,总共有 满足,1+2+4+8+16+(2n)=0,解得:n=29,总共有 不满足,【点睛】考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.23、(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤【解析】(1)设降价后乙种水果的售价是x元, 30元可购买乙种水果的斤数是,原来购买乙种水果斤数是,根据题意即可列出等式;(2)设至少购进乙种水果y斤,甲种水果(500y)斤,有甲乙的单价,总斤数900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x元,根据题意可得:,解得:x2,经检验x2是原方程的解,答:降价
26、后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y斤,根据题意可得:2(500y)+1.5y900,解得:y200,答:至少购进乙种水果200斤【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键24、(1);(2);(3)第一题.【解析】(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案【详解】(1)如果小明第一题不使用“求助”,那
27、么小明答对第一道题的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;(3)建议小明在第一题使用“求助”理由如下:小明将“求助”留在第一题,画树状图为:小明将“求助”留在第一题使用,小明顺利通关的概率=,因为,所以建议小明在第一题使用“求助”【点睛】本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.25、见解析,【解析】要证DAE=ECD需先证ADFCEF,由折叠得BC=EC,B=AEC,由矩形得BC=AD,B=ADC=90,再根据等量代换和对顶角相等可以证出,得出结论【详解】证明:由折叠得:BC=EC,B=AEC,矩形A
28、BCD,BC=AD,B=ADC=90,EC=DA,AEC=ADC=90,又AFD=CFE,ADFCEF (AAS)DAE=ECD【点睛】本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法26、(1)详见解析;(2).【解析】(1)根据直角三角形斜边上的中线等于斜边的一半,以及平行四边形的对边相等证明四边形DEBF的四边相等即可证得;(2)连接EM,EM与BD的交点就是P,FF+PM的最小值就是EM的长,证明BEF是等边三角形,利用三角函数求解【详解】(1)平行四边形ABCD中,ADBC,DBC=ADB=90ABD中,ADB=90,E时
29、AB的中点,DE=AB=AE=BE同理,BF=DF平行四边形ABCD中,AB=CD,DE=BE=BF=DF,四边形DEBF是菱形;(2)连接BF菱形DEBF中,DEB=120,EFB=60,BEF是等边三角形M是BF的中点,EMBF则EM=BEsin60=4=2即PF+PM的最小值是2故答案为:2【点睛】本题考查了菱形的判定与性质以及图形的对称,根据菱形的对称性,理解PF+PM的最小值就是EM的长是关键27、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x
30、元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg销售总利润为w元构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200a)kg销售总利润为w元由题意w=100a+150(200a)=50a+30000,500,w随x的增大而减小,当a取最小值,w有最大值,200a2a,a,当a=67时,w最小=5067+30000=26650(元),此时20067=133kg,答:购进A种级别的茶叶67kg,购进B种级别的茶叶133kg销售总利润最大为26650元点睛:本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题