江苏省南京市六合区2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc

上传人:茅**** 文档编号:88303953 上传时间:2023-04-25 格式:DOC 页数:18 大小:871KB
返回 下载 相关 举报
江苏省南京市六合区2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第1页
第1页 / 共18页
江苏省南京市六合区2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《江苏省南京市六合区2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市六合区2022-2023学年初中数学毕业考试模拟冲刺卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在ABC中,C90,sinA,则tanB等于( )ABCD2如图是二次函数y =ax2+bx + c(a0)图象如图所示,则下列结论,c0,2a + b=0;a+b+c=0,b24acCxDx二、填空题(本大题共6个小题,每小题3分,共18分)11

2、若,则= 12如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_(写出一个即可)13计算5个数据的方差时,得s2(5)2+(8)2+(7)2+(4)2+(6)2,则的值为_14因式分解:mn(nm)n(mn)=_15在平面直角坐标系中,点P到轴的距离为1,到轴的距离为2.写出一个符合条件的点P的坐标_.16如图,在ABC中,BC=7,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围_.三、解答题(共8题,共72分)17(8分)如图,抛物

3、线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标18(8分)在RtABC中,ACB90,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F(1)求证:AC是O的切线;(2)若BF6,O的半径为5,求CE的长19(8分)旅游公司在景区内配

4、置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆已知所有观光车每天的管理费是1100元(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?20(8分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45,然后他们沿着坡度为1:2.

5、4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米)21(8分)如图,在RtABC中ABC=90,AC的垂直平分线交BC于D点,交AC于E点,OC=OD(1)若,DC=4,求AB的长;(2)连接BE,若BE是DEC的外接圆的切线,求C的度数22(10分)如图1,抛物线y=ax2+bx2与x轴交于点A(1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2)(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,

6、PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将AOC绕点O逆时针方向旋转,记旋转中的三角形为AOC,在旋转过程中,直线OC与直线BE交于点Q,若BOQ为等腰三角形,请直接写出点Q的坐标23(12分)计算:4cos30+|3|()1+(2018)024为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率参考答案一、选择题(

7、共10小题,每小题3分,共30分)1、B【解析】法一,依题意ABC为直角三角形,A+B=90,cosB=,sinB=,tanB=故选B法2,依题意可设a=4,b=3,则c=5,tanb=故选B2、B【解析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】抛物线与y轴交于负半轴,则c1,故正确;对称轴x1,则2a+b=1故正确;由图可知:当x=1时,y=a+b+c1故错误;由图可知:抛物线与x轴有两个不同的交点,则b24ac1故错误综上所述:正确的结论有2个故选B【点睛】本题考查了图象与二次函数

8、系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用3、C【解析】过点A作ADBC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.【详解】如图所示,过点A作ADBC于点D.在RtABD中,BAD30,AD120m,BDADtan30120m; 在RtADC中,DAC60,CDADtan60120m.BCBDDCm.故选C.【点睛】本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.4、B【解析】主视图是从正面看得到的视图,从正面看上面圆锥看见的是:三角形,下面两个正方体看见的是两个正方形故选

9、B5、D【解析】试题分析:,由得:x1,由得:x2,在数轴上表示不等式的解集是:,故选D考点:1在数轴上表示不等式的解集;2解一元一次不等式组6、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a3)2=a26a+9,故该选项错误;B. ()1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.7、B【解析】根据需要保证不少于50%的骑

10、行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B【点睛】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。8、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征9、B【解析】由得,x3,由得,x1,所以不等式组的解集为:1x3,在数轴上表示为:,故选B10、D【解

11、析】本题主要考查分式有意义的条件:分母不能为0,即3x70,解得x【详解】3x70,x故选D【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:有意义,必须,解得:x=3,代入得:y=0+0+2=2,=1故答案为1考点:二次根式有意义的条件12、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形所以添加条件AB=AD或BC=CD或ACBD,本题答案不唯一,符合条件即可.13、1【解析】根据平均数的

12、定义计算即可【详解】解: 故答案为1【点睛】本题主要考查平均数的求法,掌握平均数的公式是解题的关键.14、【解析】mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),故答案为n(n-m)(m+1).15、(写出一个即可)【解析】【分析】根据点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值,进行求解即可【详解】设P(x,y),根据题意,得|x|=2,|y|=1,即x=2,y=1,则点P的坐标有(2,1),(2,-1),(-2,1),(2,-1),故答案为:(2,1),(2,-1),(-2,1),(2,-1)(写出一个即可).【点睛】本题考查

13、了点的坐标和点到坐标轴的距离之间的关系熟知点到x轴的距离即点的纵坐标的绝对值,点到y轴的距离即点的横坐标的绝对值是解题的关键16、【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围详解:作ADBC于点D,作PEBC于点E在ABC 中,BC=7,AC=3,tanC=1,AD=CD=3,BD=4,AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上ADBC,PEBC,PEAD,BPEBDA,即,得:BP=故答案为0PB 点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题(

14、共8题,共72分)17、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0

15、)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合18、(1)证明见解析;(2)CE=1【解析】(1)根据等角对等边得OBE=OEB,由角平分线的定义可得OBE=EBC,从而可得OEB=EBC,根据内错角相等,两直线平行可得O

16、EBC,根据两直线平行,同位角相等可得OEA=90,从而可证AC是O的切线.(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在RtOBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,OB=OE,OBE=OEB, BE平分ABCOBE=EBC,OEB=EBC,OEBC, ACB=90 ,OEA=ACB=90, AC是O的切线 .(2)解:过O作OHBF,BH=BF=3,四边形OHCE是矩形,CE=OH,在RtOBH中,BH=3,OB=5,OH=1,CE=1.【点睛】本题考查切线

17、的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性19、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元【解析】试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值试题解析:(1)由题意知,若观光车能全部租出,则0x100,由50x11000,解得x22,又x是5的倍数,每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0x100时,y1=50x1100

18、,y1随x的增大而增大,当x=100时,y1的最大值为501001100=3900;当x100时,y2=(50)x1100=x2+70x1100=(x175)2+5025,当x=175时,y2的最大值为5025,50253900,故当每辆车的日租金为175元时,每天的净收入最多是5025元考点:二次函数的应用20、 (1)坡顶到地面的距离为米;移动信号发射塔的高度约为米【解析】延长BC交OP于H.在RtAPD中解直角三角形求出AD10.PD24.由题意BHPH.设BCx.则x+1024+DH.推出ACDHx14.在RtABC中.根据tan76,构建方程求出x即可.【详解】延长BC交OP于H斜坡

19、AP的坡度为1:2.4,设AD5k,则PD12k,由勾股定理,得AP13k,13k26,解得k2,AD10,BCAC,ACPO,BHPO,四边形ADHC是矩形,CHAD10,ACDH,BPD45,PHBH,设BCx,则x+1024+DH,ACDHx14,在RtABC中,tan76,即4.1解得:x18.7,经检验x18.7是原方程的解答:古塔BC的高度约为18.7米【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形21、(1);(2)30 【解析】(1)由于DE垂直平分AC,那么AE=EC,DEC=90,而ABC=

20、DEC=90,C=C,易证,ABCDEC,A=CDE,于是sinCDE=sinA,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于DEC=90,那么EDC+C=90,又BE是切线,那么BEO=90,于是EOB+EBC=90,而BE是直角三角形斜边上的中线,那么BE=CE,于是EBC=C,从而有EOB=EDC,又OE=OD,易证DEO是等边三角形,那么EDC=60,从而可求C【详解】解:(1)AC的垂直平分线交BC于D点,交AC于E点,DEC=90,AE=EC,ABC=90,C=C,A=CDE,ABCDEC

21、,sinCDE=,AB:AC=DE:DC,DC=4,ED=3,DE=,AC=6,AB:6=:4,AB=;(2)连接OE,DEC=90,EDC+C=90,BE是O的切线,BEO=90,EOB+EBC=90,E是AC的中点,ABC=90,BE=EC,EBC=C,EOB=EDC,又OE=OD,DOE是等边三角形,EDC=60,C=30【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质解题的关键是连接OE,构造直角三角形22、(1)y=x2x2;(2)9;(3)Q坐标为()或(4)或(2,1)或(4+,)【解析】试题分析:把点代入抛物线,求出的值即

22、可.先用待定系数法求出直线BE的解析式,进而求得直线AD的解析式,设则表示出,用配方法求出它的最大值,联立方程求出点的坐标, 最大值=,进而计算四边形EAPD面积的最大值;分两种情况进行讨论即可.试题解析:(1)在抛物线上, 解得 抛物线的解析式为 (2)过点P作轴交AD于点G, 直线BE的解析式为 ADBE,设直线AD的解析式为 代入,可得 直线AD的解析式为 设则 则 当x=1时,PG的值最大,最大值为2,由 解得 或 最大值= ADBE, S四边形APDE最大=SADP最大+ (3)如图31中,当时,作于T 可得 如图32中,当时, 当时, 当时,Q3综上所述,满足条件点点Q坐标为或或或

23、23、1 【解析】直接利用特殊角的三角函数值和负指数幂的性质、零指数幂的性质、二次根式的性质分别化简得出答案【详解】原式=1+232+1=2+21=11【点睛】此题主要考查了实数运算,正确化简各数是解题关键24、(1)(2)【解析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可【详解】解: (1)甲投放的垃圾恰好是A类的概率是(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类)即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁