《江苏南京市秦外、钟英2023届中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏南京市秦外、钟英2023届中考二模数学试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(共10小题,每小题3分,共30分)1如图,RtABC中,C=90,AC=4,BC=4,两等圆A,B外切,那么图中两个扇形(即阴影部分)的面积之和为()A2B4C6D82的相反数是 ( )ABC3D-33在中,下列结论中,正确的是( )ABCD4如图,四边形ABCD内接于O,若B130,则AOC的大小是()A130B120C110D1005下列选项中,能使关于x的一元二次方程ax24x+c=0一定有实数根的是()Aa0Ba=0Cc0Dc=06青藏高原是世界上海拔最高的高原,它的面积是 2500000 平方千米将 2500000 用科学记数法表示应为( )ABCD7对于一组统计数据:
3、1,6,2,3,3,下列说法错误的是( )A平均数是3B中位数是3C众数是3D方差是2.58一组数据3、2、1、2、2的众数,中位数,方差分别是( )A2,1,0.4B2,2,0.4C3,1,2D2,1,0.29如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD若AC=10cm,BAC=36,则图中阴影部分的面积为()ABCD10在一组数据:1,2,4,5中加入一个新数3之后,新数据与原数据相比,下列说法正确的是()A中位数不变,方差不变B中位数变大,方差不变C中位数变小,方差变小D中位数不变,方差变小二、填空题(本大题共6个小题,每小题3分,共
4、18分)11小明为了统计自己家的月平均用电量,做了如下记录并制成了表格,通过计算分析小明得出一个结论:小明家的月平均用电量为330千瓦时.请判断小明得到的结论是否合理并且说明理由_.月份六月七月八月用电量(千瓦时)290340360月平均用电量(千瓦时)33012如图,直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,那么当y1y2时,x的取值范围是_13如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则AEB_.14从2,1,2这三个数中任取两个不同的数相乘,积为正数的概率是_15已知一组数据3,x,2, 3,1,
5、6的众数为3,则这组数据的中位数为_16一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD水平,BC与水平面的夹角为60,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为_cm三、解答题(共8题,共72分)17(8分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成求该工程队原计划每周修建多少米?18(8分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及
6、以上的队获胜假如甲,乙两队每局获胜的机会相同若前四局双方战成2:2,那么甲队最终获胜的概率是_;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?19(8分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知COD=OAB=90,OC=,反比例函数y=的图象经过点B求k的值把OCD沿射线OB移动,当点D落在y=图象上时,求点D经过的路径长20(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,ABC的三个顶点的位置如图所示现将ABC平移,使点A变换为点D,点E、F分别是B、C的对应点请画出平移后的DEF连接AD、CF,则这两条线段之间的关系
7、是_21(8分)先化简,再求值:(m+2),其中m=22(10分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜请问这样的游戏规则对甲乙双方公平吗?为什么?23(12分)如图,四边形ABCD内接于O,BD是O的直径,AECD于点E,DA平分BDE(1)求证:AE是O的切线;(2)如果AB=4,AE=2,求O的半径24九(1)班数学兴趣小组
8、经过市场调查,整理出某种商品在第x(1x90)天的售价与销售量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先依据勾股定理求得AB的长,从而可求得两圆的半径为4,然后由A+B=90可知阴影部分的面积等于一个圆的面积的【详解】在ABC中,依据勾股定理可知AB=8,两等圆
9、A,B外切,两圆的半径均为4,A+B=90,阴影部分的面积=4故选:B【点睛】本题主要考查的是相切两圆的性质、勾股定理的应用、扇形面积的计算,求得两个扇形的半径和圆心角之和是解题的关键2、B【解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1因此的相反数是故选B3、C【解析】直接利用锐角三角函数关系分别计算得出答案【详解】,故选项A,B错误,故选项C正确;选项D错误故选C【点睛】此题主要考查了锐角三角函数关系,熟练
10、掌握锐角三角函数关系是解题关键4、D【解析】分析:先根据圆内接四边形的性质得到 然后根据圆周角定理求 详解: 故选D.点睛:考查圆内接四边形的性质, 圆周角定理,掌握圆内接四边形的对角互补是解题的关键.5、D【解析】试题分析:根据题意得a1且=,解得且a1观察四个答案,只有c1一定满足条件,故选D考点:根的判别式;一元二次方程的定义6、C【解析】分析:在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便解答:解:根据题意:2500000=2.51故选C7、D【解析】根据平均数、中位数、众数和方差的定义逐一求解可得【详解】解:A、平均数为=3,正确;B、重新排列为1、2、
11、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2=2.8,错误;故选:D【点睛】本题考查了众数、平均数、中位数、方差平均数平均数表示一组数据的平均程度中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量8、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为(3+2+1+2+2)5=2,方差为 (3-2)2+3(2-2)2+(1-2)2=0.1,即中位数是2,众数是2,方差
12、为0.1故选B9、B【解析】试题解析:AC=10,AO=BO=5,BAC=36,BOC=72,矩形的对角线把矩形分成了四个面积相等的三角形,阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积=10 故选B10、D【解析】根据中位数和方差的定义分别计算出原数据和新数据的中位数和方差,从而做出判断【详解】原数据的中位数是=3,平均数为=3,方差为(1-3)2+(2-3)2+(4-3)2+(5-3)2=;新数据的中位数为3,平均数为=3,方差为(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=2;所以新数据与原数据相比中位数不变,方差变小,故选:D【点睛】本题
13、考查了中位数和方差,解题的关键是掌握中位数和方差的定义二、填空题(本大题共6个小题,每小题3分,共18分)11、不合理,样本数据不具有代表性【解析】根据表中所取的样本不具有代表性即可得到结论【详解】不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)故答案为:不合理,样本数据不具有代表性(例:夏季高峰用电量大不能代表年平均用电量)【点睛】本题考查了统计表,认真分析表中数据是解题的关键12、1x2【解析】根据图象得出取值范围即可【详解】解:因为直线y1kx+n(k0)与抛物线y2ax2+bx+c(a0)分别交于A(1,0),B(2,3)两点,所以当y1y2时,1x2,故答案为
14、1x2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围13、75【解析】因为AEF是等边三角形,所以EAF=60,AE=AF,因为四边形ABCD是正方形,所以AB=AD,B=D=BAD=90.所以RtABERtADF(HL),所以BAE=DAF.所以BAE+DAF=BAD-EAF=90-60=30,所以BAE=15,所以AEB=90-15=75.故答案为75.14、 【解析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与积为正数的情况,再利用概率公式求解即可求得答案【详解】列表如下:212224122242由表可知,共有6种等可能结果,其中积为正数的有2种结果,所以积为
15、正数的概率为,故答案为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率所求情况数与总情况数之比15、【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个详解:3,x,1, 3,1,6的众数是3,x=3,先对这组数据按从小到大的顺序重新排序-3、-1、1、3、3、6位于最中间的数是1,3,这组数的中位数是=1故答案为: 1点睛:本题属于基础题,考查了确定一组数据的中位数和众
16、数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.16、【解析】试题解析:如下图,画出圆盘滚动过程中圆心移动路线的分解图象可以得出圆盘滚动过程中圆心走过的路线由线段OO1,线段O1O2,圆弧,线段O3O4四部分构成其中O1EAB,O1FBC,O2CBC,O3CCD,O4DCDBC与AB延长线的夹角为60,O1是圆盘在AB上滚动到与BC相切时的圆心位置,此时O1与AB和BC都相切则O1BE=O1BF=60度此时RtO1BE和R
17、tO1BF全等,在RtO1BE中,BE=cmOO1=AB-BE=(60-)cmBF=BE=cm,O1O2=BC-BF=(40-)cmABCD,BC与水平夹角为60,BCD=120度又O2CB=O3CD=90,O2CO3=60度则圆盘在C点处滚动,其圆心所经过的路线为圆心角为60且半径为10cm的圆弧的长=210=cm四边形O3O4DC是矩形,O3O4=CD=40cm综上所述,圆盘从A点滚动到D点,其圆心经过的路线长度是:(60-)+(40-)+40=(140-+)cm三、解答题(共8题,共72分)17、该工程队原计划每周修建5米【解析】找出等量关系是工作时间工作总量工作效率,可根据实际施工用的
18、时间+1周原计划用的时间,来列方程求解【详解】设该工程队原计划每周修建x米由题意得:+1整理得:x2+x322解得:x15,x26(不合题意舍去)经检验:x5是原方程的解答:该工程队原计划每周修建5米【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键本题用到的等量关系为:工作时间工作总量工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解18、(1);(2)【解析】分析:(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求详解:(1)甲队最终获胜的概率是;(2)画树状图为:共有8种等可能的结果
19、数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率19、(1)k=2;(2)点D经过的路径长为【解析】(1)根据题意求得点B的坐标,再代入求得k值即可;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(1,1),设D横坐标为t,则OE=MF=t,即可得D(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理
20、求得DD的长,即可得点D经过的路径长【详解】(1)AOB和COD为全等三的等腰直角三角形,OC=,AB=OA=OC=OD=,点B坐标为(,),代入得k=2;(2)设平移后与反比例函数图象的交点为D,由平移性质可知DDOB,过D作DEx轴于点E,交DC于点F,设CD交y轴于点M,如图, OC=OD=,AOB=COM=45,OM=MC=MD=1,D坐标为(1,1),设D横坐标为t,则OE=MF=t,DF=DF=t+1,DE=DF+EF=t+2,D(t,t+2),D在反比例函数图象上,t(t+2)=2,解得t=或t=1(舍去),D(1, +1),DD=,即点D经过的路径长为【点睛】本题是反比例函数与
21、几何的综合题,求得点D的坐标是解决第(2)问的关键20、见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是ADCF,且ADCF21、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2(-+3)=-122、(1)P(抽到数字为2)=;(2)不公平,理由见解析.【解析】试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解试题解析: (1)P=;(2)由题意画出树状图如下:一共有6种情况,甲获胜的情况
22、有4种,P=,乙获胜的情况有2种,P=,所以,这样的游戏规则对甲乙双方不公平考点:游戏公平性;列表法与树状图法23、(1)见解析;(1)O半径为【解析】(1)连接OA,利用已知首先得出OADE,进而证明OAAE就能得到AE是O的切线;(1)通过证明BADAED,再利用对应边成比例关系从而求出O半径的长【详解】解:(1)连接OA,OA=OD,1=1DA平分BDE,1=21=2OADEOAE=4,AECD,4=90OAE=90,即OAAE又点A在O上,AE是O的切线(1)BD是O的直径,BAD=903=90,BAD=3又1=2,BADAED,BA=4,AE=1,BD=1AD在RtBAD中,根据勾股
23、定理,得BD=O半径为24、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案【详解】(1)当1x50时,当50x90时,综上所述:.(2)当1x50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2452+18045+2000=6050,当50x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20x60时,即共41天,每天销售利润不低于4800元【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用