浮头式换热器设计-学位论文.doc

上传人:教**** 文档编号:88284648 上传时间:2023-04-24 格式:DOC 页数:49 大小:903KB
返回 下载 相关 举报
浮头式换热器设计-学位论文.doc_第1页
第1页 / 共49页
浮头式换热器设计-学位论文.doc_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《浮头式换热器设计-学位论文.doc》由会员分享,可在线阅读,更多相关《浮头式换热器设计-学位论文.doc(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、J155毕业设计(论文)题 目 名 称浮头式换热器设计题 目 类 型毕业设计系 部专 业 班 级学 生 姓 名指 导 教 师辅 导 教 师时 间毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期: 毕业论文(设计)授权使用说明本论文(设计)作者完全了解*学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电

2、子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名: 指导教师签名: 日期: 日期: 注 意 事 项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数

3、不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它目录毕业设计(论文)任务

4、书开题报告指导教师审查意见评阅教师评语答辩会议记录中文摘要英文摘要前言11 热力计算21.1原始数据21.2定性温度和物性参数计算21.3初选结构31.4管程换热计算及流量计算31.5壳程换热计算51.6传热系数61.7管程压降71.8壳程压降81.9压强校核92 结构设计102.1换热流程设计102.2管子和传热面积102.3管子排列方式102.4壳体112.5管箱122.6固定管板132.7分程隔板132.8折流板142.9拉杆152.10进出口管152.11浮头箱162.12浮头162.13补强圈172.14法兰172.15支座193 强度校核213.1管箱的强度校核及优化213.2壳体

5、的强度校核及优化224 制造工艺及安装244.1制造工艺244.2安装与拆卸255 Solidworks绘出的实体模型27小结28参考文献29致谢30长江大学工程技术学院毕业论文(设计)任务书系 部:机械系专业:过程装备班级:装备0601学生姓名:丁红林指导教师/职称:周志宏/教授1. 毕业论文(设计)题目:浮头式换热器设计2. 毕业论文(设计)起止时间:2009年11月1日2010年6月1日3.毕业设计(论文)所需资料及原始数据(指导教师选定部分)换热器设计原始数据壳体规格700;管箱规格750;换热管规格193L=8000项目壳程管程设计压力(Mp)1.62操作温度(进口/出口)175/1

6、55144/163设计温度220200介质急冷油锅炉给水4.毕业设计(论文)应完成的主要内容(1)换热器的发展概况(2)总体参数设计计算(3)传热学计算(4)有限元分析(5)结构的三维设计(6)换热器的工程图设计5.毕业设计(论文)的目标及具体要求换热器的三维图工程图:总装配图,部件装配图各一张,零件图3张6、完成毕业设计(论文)所需的条件及上机时数要求熟悉Solidworks上机100小时任务书批准日期系主任/责任教授任务书下达日期指导教师完成任务日期学生签名-长江大学工程技术学院毕业设计(论文)开题报告题目名称浮头式换热器设计系部机械系专业班级装备601学生姓名丁红林指导教师周志宏辅导教师

7、周志宏开题报告时间2009年11月-2009年12月浮头式换热器设计学生:丁红林 长江大学工程技术学院指导教师:周正宏 长江大学机械工程学院一、题目来源及其类型题目来源:生产实际题目类别:毕业设计二、研究目的和意义换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备 ,随着现代新工艺、 新技术、新材料的不断开发和能源问题的日趋严重 ,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用 ,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达 96% 。换热设备在现代装置

8、中约占设备总重的30% 左右,其中管壳式换热器仍然占绝对的优势,约70% 。其余30% 为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备,其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性 ,产品系列化、标准化和专业化,并朝大型化的方向研究发展。三、阅读的主要参考文献及资料名称1 史美中,王中铮.热交换器原理与设计M.北京:东南大学出版社,19962 钱颂文.换热器设计手册M.北京:化学工业出版社,2003 3 郑津洋,董其伍,桑芝富.过程装备设计M.北京:化学工业出版社,20054王志魁.化工原理M.北京:化学工业出版社,20

9、00 5贺卫国.化工容器及设备简明设计手册M.北京:化学工业出版社,2003 6王志文.化工容器设计M.北京:化学工业出版社,19907贺匡国.压力容器分析设计基础M.北京:机械工业出版社,19958潘家祯.压力容器材料实用手册M.北京:化学工业出版社,20009卓震. 化工容器及设备M.北京:中国石化出版社,199810GB 150-1998钢制压力容器S.北京:中国标准出版社,200311GB 151-1999管壳式换热器S.北京:中国标准出版社,2004 12HG 20582-1998钢制化工容器强度计算规定S.化工部工程建设标准编辑中心出版,199813 JB 4732-1995钢制压

10、力容器分析设计标准S.北京:新华出版社,1995 14 Beneath A. Saurian and Rosary S. Michalski, Applying Separable Evolution Model to Heat Exchange Design15 James R Burly. Dont overlook compact heat exchangers. Chemical Engineering.,1991, 98(8):909616Heat transfer suppliers,focus on safety. Chemical Engineering,1993,100(4)

11、:147154四、国内外现状和发展趋势与研究的主攻方向1、我国换热器发展前景换热器(热交换器)是将热流体的部分热量传递给冷流体的设备,换热器按传热方式的不同可分为混合式(混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器)、蓄热式(蓄热式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器)和间壁式(随间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广)三类。在我国换热器的制造技术远落后于外国,由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小

12、、体积大和笨重,如蛇管式换热器等。随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。 在我国随着经济快速发展的同时,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。完善的换热器在设计或选型时应满足以下基本要求:(1) 合理地实现所规定的工艺条件;(2) 结构安全可靠;(3) 便于制造、安装、操作和维修;(4) 经济上合理。70年代的世界能源危机,有力促进了换热强化技术的发展。为了节能将耗,提高工业生产经济效益,要求

13、开发适用于不同工业过程要求的高效换热设备。所以这些年来,换热器的开发和研究成了人们关注的课题。当今换热器技术的发展以CFD(计算流体力学技术)、模型化技术、强化传热技术等形成一个高技术体系。所谓提高换热器性能,就是提高其传热性能。狭义的强化传热系数指提高流体和传热之间的传热系数。其主要方法归结为下述两个原理:温度边界层减勃和调换传热面附近的流体。因此最近十几年来,强化传热技术受到了工业界的广泛重视,得到了十分迅速的发展,凝结是工业中普遍遇到的另一种相变换热过程,凝结换热系数很高,但经过强化措施还可以进一步提升换热效率。1. 管外凝结换热的强化(1)冷却表面的特殊处理对冷却表面的特殊处理,主要是

14、为了在冷却表面上产生珠状凝结。珠状凝结的换热系数可比通常的膜状凝结高510倍,由于水和有机液体能润湿大部分的金属壁面,所以应采用特殊的表面处理方法(化学覆盖法、聚合物涂层法和电镀法等),使冷凝液不能润湿壁面,从而形成珠状凝结。用电镀法在表面涂一层贵金属,如金、铂、钯等效果很好,缺点是价格昂贵。(2)冷却表面的粗糙化粗糙表面可增加凝结液膜的湍流度,亦可强化凝结换热。实验证明,当粗糙高度为0.5mm时,水蒸气的凝结换热系数可提高90%。值得注意的是,当凝结液膜增厚到可将粗糙壁面淹没时,粗糙度对增强凝结换热不起作用。有时当液膜流速较低时,粗糙壁面还会滞留液膜,对换热反而不利。(3)采用扩展表面在管外

15、膜状凝结中常常采用低肋管,低肋管不但增加换热面积,而且由于冷凝流体的表面张力,肋片上形成的液膜较薄,因此其凝结换热系数可比光管高75%100%。应用螺旋槽管和管外加螺旋线圈。螺旋槽管,管子内外壁均有螺纹槽,既可强化冷凝换热,又可强化冷却侧的单相对流换热,与光管相比其凝结强度可提高3550%。在管外加螺旋线圈,由于表面张力使凝结液流到金属螺旋线圈的底部而排出,上部及四周液膜变薄,从而凝结换热系数有时甚至可提高2倍。2. 管内凝结换热的强化(1)扩展表面法采用内肋管是强化管内凝结的最有效的方法,试验表明,其换热系数比光管高2040%。按光面计算则换热系数可高12倍。(2)采用流体旋转法采用螺旋槽管

16、等流体旋转法可以强化凝结换热。换热效率同比提升30%,但此时流动阻力也会增加。(3)改变传热面形状改变传热面形状的方法有多种,其中用于无相变强化传热的有横波纹管、螺旋螺纹管和缩放管,还有螺旋扁管和偏置折边翅片管。都是高效换热元件。值得注意的是,在强化凝结换热之前,应首先保证凝结过程的正常进行。例如,排除不凝气体的影响,顺利地排除冷凝液等。改变实践证明,在降低流体在壳程的阻力并保证流体在湍流状态下流动,这样才能充分的提高介质的换热系数,内翅片管、横螺纹管、螺旋螺纹管都一样,不但可用于单相对流传热,也可以有效的用于管内流动沸腾传热(螺纹管在湍流时可使对流传热系数增加一倍多)。当然现在各式换热器的设

17、计各有新颖之处,结构上各具特色。原有的换热器厂家最近也研制出一种新型Hybrid换热器,他克服了板式因密封问题而受到限制的弱点,很有发展前途。 近年来,随着制造技术的进步,强化换热元件的开发,使得新型高效换热器的研究有了较大的发展,根据不同的工艺条件与工况设计制造了不同结构形式的新型换热器,也取得了较大的经济效益。故我们在选择换热设备时一定要根据不同的工艺、工况要求选择。换热器的作用可以是以热量交换为目的。在即定的流体之间,在一定时间内交换一定数量的热量;也可以是以回收热量为目的,用于余热利用;也可以是以保证安全为目的,即防止温度升高而引起压力升高造成某些设备被破坏。换热器的作用不同,其设计、

18、选型、运行工况也各不相同。对换热器的基本要求是换热器要满足换热要求,即达到需求的换热量和热媒温度;换热器的热损失要少,换热效率要高;流动阻力要小;要有足够的机械强度,抗腐蚀和抗损坏能力要强,维护工作量要少;结构要合理,工作要安全可靠,即零部件之间因为温升而产生的热应力不会导致换热器破裂;要便于制造、安装和检修;经济上要合理,设奋全寿命期的总投资要少(总投资包括设备及附属装置初投资费用和运行维护管理费用);生活热水系统的换热器应易于清除水垢,以上要求常常相互制约,难于同时满定,因此应视具体情况,在换热器的选型和设计中有所侧重,满足工程对换热器的主要要求。因为换热器故障率较低,并且供暖为季节性负荷

19、,有足够的检修时间,生活热水系统暂停供热也不会造成重大影响,所以可不设备用换热器。换热器台数的选择和单台能力的确定应适应热负荷的分期增长,并考虑供热的可靠性。未来,国内市场需求将呈现以下特点:对产品质量水平提出了更高的要求,如环保、节能型产品将是今后发展的重点;要求产品性价比提高;对产品的个性化、多样化的需求趋势强烈;逐渐注意品牌产品的选用;大工程项目青睐大企业或企业集团产品。国内经济发展带来的良好机遇,以及进口产品巨大的可转化性共同预示着我国换热器行业良好的发展前景。同时,行业发展必须要注重高端产品的研发。2、国外换热器发展前景在国外二十世纪20年代出现板式换热器,并应用于食品工业。以板代管

20、制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。 60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热

21、器也得到了进一步的发展,这一类换热器不但是从材料上有了较大的突破,而且采用新颖的理念,增加强化传热。70年代中期,为了进一步减小换热器的体积,减轻重量和金属消耗,减少换热器消耗的功率,并使换热器能够在较低温差下工作,人们更是采用各种科学的办法来增强换热器内的传热。对国外换热器市场的调查表明,管壳式换热器占64%。虽然各种板式换热器的竞争力在上升,但管壳式换热器仍将占主导地位。随着动力、石油化工工业的发展,其设备也继续向着高温、高压、大型化方向发展。而换热器在结构方面也有不少新的发展。现就几种新型换热器的特点简介如下:一、气动喷涂翅片管换热器俄罗斯提出了一种先进方法,即气动喷涂法,来提高翅片化表

22、面的性能。其实质是采用高速的冷的或稍微加温的含微粒的流体给翅片表面喷镀粉末粒子。用该方法不仅可喷涂金属还能喷涂合金和陶瓷(金属陶瓷混合物),从而得到各种不同性能的表面。通常在实践中翅片底面的接触阻力是限制管子加装翅片的因素之一。为了评估翅片管换热器元件进行了试验研究。试验是采用在翅片表面喷涂ac铝,并添加了 24a白色电炉氧化铝。将试验所得数据加以整理,便可评估翅片底面的接触阻力。将研究的翅片的效率与计算数据进行比较,得出的结论是:气动喷涂翅片的底面的接触阻力对效率无实质性影响。为了证实这一点,又对基部(管子)与表面(翅片)的过渡区进行了金相结构分析。对过渡区试片的分析表明,连接边界的整个长度

23、上无不严密性的微裂纹。所以,气动喷涂法促进表面与基本相互作用的分支边界的形成,能促进粉末粒子向基体的渗透,这就说明了附着强度高,有物理接触和金属链形成。因而气动喷涂法不但可用于成型,还可用来将按普通方法制造的翅片固定在换热器管子的表面上,也可用来对普通翅片的底面进行补充加固。可以预计,气动喷涂法在紧凑高效换热器的生产中,将会得到广泛应用。二、螺旋折流板换热器在管壳式换热器中,壳程通常是一个薄弱环节。通常普通的弓形折流板能造成曲折的流道系统(z字形流道),这样会导致较大的死角和相对高的返混。而这些死角又能造成壳程结垢加剧,对传热效率不利。返混也能使平均温差失真和缩小。其后果是,与活塞流相比,弓形

24、折流板会降低净传热。优越弓形折流板管壳式换热器很难满足高热效率的要求,故常为其他型式的换热器所取代(如紧凑型板式换热器)。对普通折流板几何形状的改进,是发展壳程的第一步。虽然引进了密封条和附加诸如偏转折流板及采取其他措施来改进换热器的性能,但普通折流板设计的主要缺点依然存在。为此,美国提出了一种新方案,即建议采用螺旋状折流板。这种设计的先进性已为流体动力学研究和传热试验结果所证实,此设计已获得专利权。此种结构克服了普通折流板的主要缺点。螺旋折流板的设计原理很简单:将圆截面的特制板安装在“拟螺旋折流系统” 中,每块折流板占换热器壳程中横剖面的四分之一,其倾角朝向换热器的轴线,即与换热器轴线保持一

25、倾斜度。相邻折流板的周边相接,与外圆处成连续螺旋状。折流板的轴向重叠,如欲缩小支持管子的跨度,也可得到双螺旋设计。螺旋折流板结构可满足相对宽的工艺条件。此种设计具有很大的灵活性,可针对不同操作条件,选取最佳的螺旋角;可分别情况选用重叠折流板或是双螺旋折流板结构。三、新型麻花管换热器Alares公司开发了一种扁管换热器,通常称为麻花管换热器。美国休斯顿的布朗公司做了改进。螺旋扁管的制造过程包括了“压扁”与“热扭”两个工序。改进后的麻花管换热器同传统的管壳式换热器一样简单,但有许多激动人心的进步,它获得了如下的技术经济效益:改进了传热,减少了结垢,真正的逆流,降低了成本,无振动,节省了空间,无折流

26、元件。由于管子结构独特使管程与壳程同时处于螺旋运动,促进了湍流程度。该换热器总传热系数较常规换热器高40%,而压力降几乎相等。组装换热器时也可采用螺旋扁管与光管混合方式。该换热器严格按照ASME标准制造。凡是用管壳式换热器和传统装置之处均可用此种换热器取代。它能获得普通管壳式换热器和板框式传热设备所获得的最佳值。估计在化工、石油化工行业中具有广阔的应用前景。四、非钎焊绕丝筋管螺旋管式换热器在管子上缠绕金属丝作为筋条(翅片)的螺旋管式换热器,一般都是采用焊接方法将金属丝固定在管子上。但这种方法对整个设备的质量有一系列的影响,因为钎焊法必将从换热中“扣除”很大一部分管子和金属丝的表面。更重要的是,

27、由于焊料迅速老化和破碎会造成机器和设备堵塞,随之提前报损。俄罗斯推荐一种新方法制造绕丝筋管,即借助在管子上缠绕和拉紧金属丝时产生的机械接触来固定筋条。采用此法能促进得到钎焊时的连续特性(即将金属丝可靠地固定在管子上,而管子的截面又不过分压紧),故对于金属丝仅用做隔断时,可以认为是较钎焊更受欢迎的方法。但若利用金属丝作为筋条(翅片)以增加换热面积时,只有当非钎焊筋条的有效传热面不小于钎焊连接时,才应更偏重于此方法。试验表明,当金属丝与管子为线性接触时,有效传热面最大,但此时金属丝会沿管子滑动。所以关键是要选取最佳的接触宽度,也就是绕丝时管子变形留下的痕迹的宽度。这样,非钎焊时的有效传热面要比钎焊

28、时大。该换热器推荐用于氦技术和冷却工艺。五、主要研究内容、需重点研究的关键问题及解决思路1、毕业设计应完成的主要内容(1)换热器的发展概况(2)总体参数设计计算(3)传热学计算(4)有限元分析(5)结构的三维设计(6)换热器的工程图设计2、毕业设计的目标及具体要求换热器的三维图工程图:总装配图,部件装备图各一张;零件图3张3、需重点研究的关键问题及解决思路关键问题:换热器总体设计计算及工程图的设计绘制;解决思路:借助相关的换热器设计手册及计算机辅助设计软件进行设计计算及绘图六、完成毕业设计(论文)所必须具备的工作条件(如工具书、计算机辅助设计、某类市场调研、实验设备和实验环境条件等)及解决的办

29、法为完成本毕业设计,将运用在校学习的工程制图,力学,材料学,过程装备设计及计算机等相关知识,结合在生产实习等实践教学中,学习的换热器及零部件的加工制造和装配知识,以及学习的有关换热器的设计知识,通过对各种技术资料的收集调研,分析计算,设计绘图的实践,学习掌握由原理方案的设想,转化为结构的设计思路及设计方法。熟练掌握各方面的知识。计算机辅助设计软件:SW6-1998 v6.0 、AutoCAD2004 、Solidworks 、ANSYS、MS office等软件工具书:化工英汉词典、化工设计手册GB 150-1998钢制压力容器、GB 151-1999管壳式换热器七、工作的主要阶段、进度与时间

30、安排预计用20周完成毕业论文,具体时间安排如下:第1周:选题及联系导师,确定毕业设计任务书;第2周:查找资料,编写开题报告及英文翻译; 第3周:与老师商讨,确定开题报告; 第4周:根据论文题目进一步查找材料; 第5周:完成论文大纲交老师批阅; 第611周:依据论文大纲完成论文一稿交老师批阅;第1213周:完成论文二稿交老师批阅; 第1415周:翻译相关英文资料; 第1617周:完成论文三稿; 第1819周:完成相关论文简介、答辩提纲等; 第20周:定稿打印。八、指导教师审查意见-浮头式换热器的设计中文摘要学生:丁红林 长江大学工程技术学院指导老师:周志宏 长江大学机械工程学院摘要本次设计的题目

31、为浮头式换热器。浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了2-4型,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,之后对有些部件有限元软件ANSYS进行了强度校核并对结构进行了优化,最后提出一些制造与安装方面的问题。三维

32、实体以及二维工程图均用solidworks绘出。关键词换热器;浮头;管壳 Design of floating head heat exchanger英文摘要Student:Honglin Ding, Yangtze University College Of Technology & EngineeringGuide Teacher:Zhihong Zhou, Yangtze University School Of Mechanical EngineeringAbstract:The topic of my study is the design of floating head heat

33、 exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed, while another can float in the shell, so called floating head. As the tubes can expand without the restriction of the shell, it can av

34、oid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 2-4 is chosen to be the basic type, which has two segment

35、 in shell and four segment in tubes. First, heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then, according to the request and standards, structural of system is well designed. After that, the finite element analysis of the shell is comple

36、ted employing ANSYS software and optimal design result is given. Finally, some manufacture and installation issues are related. The 3-D and 2-D drawings are done using solidworks.Key words:heat exchanger;floating head;tube and shell -制造工艺及安装浮头式换热器的设计1 前言前言浮头式换热器是管壳式换热器系列中的一种,管壳式换热器以其对温度、压力、介质的适应性,耐用

37、性及经济性,在换热设备中始终占有约70%的主导地位。因此管壳式换热器的标准化工作为世界各工业发达国家所重视,也为ISO国际标准化组织的所重视。因此出现了TEMA、API660、JISB8249等一批管壳式换热器标准,ISO目前也正在与API联手并会同有关国家编ISO管壳式换热器标准。总的来说管壳式换热器主要由换热管束、壳体、管箱、分程隔板、支座等组成。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,

38、也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。分程隔板可将管程及壳程介质分成多程,以满足工艺需要。管壳式换热器主要有固定管板式,U型管式和浮头式换热器。针对固定管板式与U型管式的缺陷,浮头式作了结构上的改进,两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力。浮头式换热器的优点还在于方便拆卸,清洗方便,对于管子和壳体间温差大、壳程介质腐蚀性强、易结垢的情况很能适应。其缺点在于结构复杂、填塞式滑动面处在高压时易泄露,这使其应用受到限制,适用压力为:1.0Mpa6.4Mpa。 按照设计要求,在

39、结构的选取上,为了增大温差校正系数,采用了2-4型,即壳侧两程管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,在结构设计时,要考虑许多因素,例如传热条件、材料、介质压力、温度、流体性质以及便于拆卸等等。之后对有些部件用ANSYS进行了强度校核并进行对其优化设计。由于时间和资料有限,本人的认识也不够全面,在设计过程中可能还存在许多问题,望老师们给予批评和指正。1 热力计算1.1原始数据水进口温度:=144水出口温度:=163水工作压力:P2=2MPa油进口温度:=175油出口温度:=155油工作压力:P1=1.6MPa壳体内径:

40、DS=700mm管箱内径:DN=750mm换热管规格:193 L=8m1.2定性温度和物性参数计算水的定性温度:(1)水的密度:2=913kg/m3水的比热:Cp2=4.32kJ/kg水的导热系数:k2=0.686W/m 水的粘度:2=168.810-6水的柏朗特数:Pr2=1.08油(柴油)的定性温度:(2)油的密度:1=715 kg/m3油的比热:Cp1=2.48 kJ/kg油的导热系数:k1=0.133 W/m油的粘度:1=6.410-4油的柏朗特数:(3)1.3初选结构管排列方式 :分程隔板两侧正方形,其余三角形管子外径:d0=0.019m管子内径:di=d0-(23/1000)=0.

41、013m(4)管长:L=8m管间距:s=1.5d0=1.50.19=0.0285m(5)壳体内径:Ds=0.7m管束中心排管数:由公式(6)得Nc=22总管子数:由(7)得Nt=400选型:采用2-4型即双壳程四管程。1.4管程换热计算及流量计算试选传热系数:k0=240 W/m2(查表)传热面积:由(8)得F0=190.91 m2逆流平均温差:(9)参数:(10)(11)温差校正系数:按2壳程4管程查表得 有效平均温差:(12)设计传热量:(13)换热效率:取=0.98油流量:(14)水流量:(15)管程流通截面(按4管程):(16)管程流速:(17)管程雷诺数:(18)管程换热系数:(19

42、)1.5壳程换热计算折流板的设计:纵向折流板中间分程,横向安置弓形折流板弓形折流板弓高:(20)折流板间距:(21)壳程流通截面:(22)壳程流速:(23)壳程量流速(24)壳程当量直径:(25)壳程雷诺数:(26)切去弓形面积所占比例:查图得(27)壳程传热因子:查图得管外壁温度:假定后再复核,设=160壁温下的粘度: (28)粘度修正系数:(29)壳程换热系数:(30)1.6传热系数水侧污垢热阻: m2/W油侧污垢热阻: m2/W管壁热阻:r忽略总传热热阻:(31)传热系数:(32)传热系数的比值: (33)合适管外壁热流密度:=4118W/m2(34)管外壁温度:=167.2(35)误差

43、校核:=167.2-160=7.2(36)误差不太大,不再重算。1.7管程压降壁温:=161.3(37)壁温下水的粘度:管程摩擦系数:查表得管子沿程压降:(38)回弯压降:(39)进出口管处质量流速:(40)进出管口处压降:(41)管程结垢校正系数:根据r2及193得 管程压降:(42)1.8壳程压降当量直径:(43)雷诺数:(44)壳程摩擦系数:查表得 管束压降:(45)管嘴处质量流量:(46)进出口管压降:(47)导流板阻力系数:取 导流板压降:(48)壳程结垢修正系数:查表取 壳程压降:(49)1.9压强校核管程工作压力,查表得壳程工作压力,查表得压强校核: 符合要求 符合要求2 结构设

44、计2.1换热流程设计采用2壳程4管程的2-4型换热器。由于换热器尺寸不大,可以用一台,未考虑采用多台组合使用。管程分程隔板采用丁字型结构,其主要优点是布管紧密。壳体分程采用纵向隔板。管程的分程隔板采用丁字型结构如图1所示,其主要优点是布管紧密。 图1 丁字形隔板2.2管子和传热面积换热管除要求具有足够的强度外,当采用胀管法固定时,还要求管子有良好的塑性,避免因胀接而产生裂缝。焊接固定时,要求管子可焊性好,一般采用优质碳钢,以保证管子质量,一般对于无腐蚀性或腐蚀性不大的流体可采用10号钢和20号钢管,在强腐蚀性流体的情况下,可采用不锈钢(189)、钢、铝等无缝管,在强腐蚀性流体的情况下,可采用石

45、墨管、聚四氟乙烯管等。由于水、油腐蚀性不大,故可采用碳钢,现选择20号钢的无缝钢管。根据设计要求采用的无缝钢管管子总数为400根。其传热面积为:2.3管子排列方式管子在管板上的排列方式,应力求均布、紧凑并考虑清扫和整体结构的要求。基本的排列方式有五种:等边三角形。其一边与流向垂直,是最常用的形式。与正方形排列相比传热系数高,可节省15%的管板面积。适用于不生污垢或可用化学清洗污垢以及允许压降较高的工况;转角三角形。三角形的一边与流向平行,其特点介于等边三角行和正方形两种排列之间,不宜用于卧式冷凝器,因下方管子形成的厚度越来越厚的凝膜会使传热削弱;正方形排列最不紧凑,但便于机械清扫,常用于壳程介

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁