《2022年山东省聊城市中考数学试卷含解析.pdf》由会员分享,可在线阅读,更多相关《2022年山东省聊城市中考数学试卷含解析.pdf(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年山东省聊城市中考数学试卷题号一二三总分得分一、选 择 题(本大题共12小题,共36分)1.实数a的绝对值是:,a的值是()A.-4 B.-42.C.5 D.4如图,该几何图形是沿着圆锥体的轴切割后得到的“半个”圆锥体,B.正面3.下列运算正确的是()A.(-3xy)2=3x2y2C.t(3t?t+1)=3t3 土2+1B.3x2+4x2=7x4D.(-a3)4+(-a4)3=-14.要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等5.射击时,子弹射出枪口
2、时的速度可用公式=后 进 行 计 算,其中a为子弹的加速度,s为枪筒的长.如果a=5 x 105n l/$2,s=0.64m,那么子弹射出枪口时的速度(用科学记数法表示)为()A.0.4 x 103nj/s B.0.8 x 103m/s C.4 x 102m/s D.8 x 102m/s6.关于x,y的方程组二楙一 3,的解中 与y的和不小于5,贝麟的取值范围为()A./c 8 B./c 8 C.k 8 D.k 0)在第一象限内的图象交于点4(2,q),与y轴交于点B,过双曲线上的一点C作x轴的垂线,垂足为点D,交直线y=Px+3于点E,且SA A O B:S&COD=3:4.(1)求k,p的
3、值;(2)若OE将四边形BOCE分成两个面积相等的三角形,求点C的坐标.ODx24.如图,点。是 ABC的边AC上一点,以点。为圆心,。4为半径作。,与BC相切于点E,交4B于点D,连接0 E,连接。并延长交CB的延长线于点F,乙4。=乙EOD.(1)连接4凡 求证:4F是。的切线;(2)若FC=10,AC=6,求FC的长.25.如图,在直角坐标系中,二次函数、=-/+法+(;的图象与轴交于4,B两点,与y轴交于点C(0,3),对称轴为直线x=-l,顶 点、为点D.(1)求二次函数的表达式;(2)连接ZM,DC,CB,C A,如图所示,求证:ADAC=ABCO;(3)如图,延长DC交x轴于点M
4、,平移二次函数丫 =一/+以+:的图象,使顶点。沿着射线DM方向平移到点A 且CD】=2C D,得 到 新 抛 物 线 y1交y轴于点N.如果在y i的对称轴和力上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.第8页,共24页答案和解析1.【答案】D【解析】解:.同=京.5a=-4故选:D.根据绝对值的意义直接进行解答本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.2.【答案】B【解析】解:从左边看该几何体它是一个斜边在左侧的三角形,故选:B.根据左视图的定义解答即可.本题考查了简单几何体的三视图,从左面看得到的
5、视图是左视图.3.【答案】D【解析】解:4、原式=9 x2 y2,不合题意;B、原式=7/,不合题意;C、原式=313一户+3不合题意;D、原式=-1,符合题意;故选:D.A、根据积的乘方与累的乘方运算判断即可;B、根据合并同类项法则计算判断即可;C、根据单项式乘多项式的运算法则计算判断即可;。、根据积的乘方与暴的乘方、同底数幕的除法法则计算即可.此题考查的是积的乘方与幕的乘方运算、合并同类项法则、单项式乘多项式的运算、同底数基的除法法则,掌握其运算法则是解决此题的关键.4.【答案】C【解析】解:4、测量两条对角线是否相等,不能判定为平行四边形,更不能判定为矩形,故选项A 不符合题意;8、度量
6、两个角是否是90。,不能判定为平行四边形,更不能判定为矩形,故选项B 不符合题意:C、测量对角线交点到四个顶点的距离是否都相等,可以判定为矩形,故选项C 符合题悬;。、测量两组对边是否相等,可以判定为平行四边形,故选项。不符合题意;故选:C.由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.本题考查了矩形的判定、平行四边形的判定与性质等知识;熟 记“对角线互相平分的四边形为平行四边形”是解题的关键.5.【答案】D【解析】解:u=V2as=V2 x 5 x 105 x 0.64=8 x 102(m/s),故选:D.把a=5 x 1()57n/$2,s=0.64m代入公式,=V2as
7、,再根据二次根式的性质化简即可.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a x IO的形式,其中1|a|5,解得:fc8.所以k的取值范围是kN 8.故选:A.两个方程相减可得出x+y=k-3,根据+y 2 5列出关于k的不等式,解之可得答案.本题主要考查解一元一次不等式,解二元一次方程组,解题的关键是掌握解一元一次不等式的能力、不等式的基本性质等知识点.7.【答案】B【解析】解:3/+6x-1=0,3x2+6x=1,2 o 1+2%=3第10页,共24页则2+2%+1=:+1,即(X+1)2=%4 a=l,b=r7 a+b=-.3故选:B.将常数项移到方程的右边,两边都加上
8、一次项系数一半的平方配成完全平方式后,继而得出答案.本题考查了解一元二次方程,能够正确配方是解此题的关键.8.【答案】B【解析】解:总体为全校学生一周的零花钱数额,故选项A 不合题意;五组对应扇形的圆心角度数为:3 6 0 x=3 6,故选项5 符合题意;在这次调查中,四组的频数为:50X16%=8,故选项C 不合题意;若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为:1500 x,S O I L -人),故 选 项。不合题意,故选:B.选项A 根 据“总体”的定义判定即可;选项8 用360。乘“五组”所占的百分比,即可求出对应的扇形圆心角的度数;选项C根 据“频率=频数+
9、总数”可得答案;选项。利用样本估计总体即可.本题考查的是频数分布表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.9.【答案】C【解析】解:v AOC=80,Z.OAC+/.OCA=100,v 4P=30,APAO+乙 PCO=50,:OA=OB,OC=OD,Z-OBA=Z.OAB f Z.OCD=Z-ODC,Z.OBA+Z.ODC=50,BOA+乙COD=260,乙BOD=360-80-260=20.劭 的度数20。.故选:C.根据圆周角定理和圆心角、弧、弦的关系定理解答即可.本题主要考查了圆周角定理和圆心
10、角、弧、弦的关系定理,熟练掌握相关的定理是解答本题的关键.10.【答案】A【解析】解:.线 段 4/1 是将 ABC绕着点P(3,2)逆时针旋转一定角度后得到的的一部分,力 的对应点为公,乙4PAi=90,旋转角为90。,二点C绕点P逆时针旋转90。得到的C1点的坐标为(一2,3),故选:A.根据旋转的性质解答即可.本题主要考查了旋转的性质,熟练掌握对应点与旋转中心的连线是旋转角和旋转角相等是解答本题的关键.11.【答案】D【解析】解:4 由作图可知,4Q平分NB4C,乙 BAP=/.CAP=-Z.BAC=40,2故选项A 正确,不符合题意;A 由作图可知,GQ是BC的垂直平分线,乙DEB=9
11、0,乙 B=30,DE=-BD,2故选项3 正确,不符合题意;C.v=30,Z-BAP=40,Z,AFC=70,第12页,共24页V 4 c=7 0 ,AF=AC,故选项C正确,不符合题意;D-乙 EFQ=AFC=7 0,乙 QEF=9 0 ,4 EQF=2 0;故选项。错误,符合题意.故选:D.根据线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质判断即可.本题考查了线段的垂直平分线的性质,角平分线的定义,三角形外角的性质,直角三角形的性质等知识,解题的关键是读懂图象信息.1 2.【答案】C【解析】解:作C(一 2,0)关于y 轴的对称点G(2,0),作C(2,0)关
12、于直线y =x +4 的对称点D,连接4。,连接D G 交4 B 于E,交y 轴于尸,如图:CE+CF+EF=DE+GF+EF=D G,此时 C E F 周长最小,由旷=x +4 得4(-4,0),8(0,4),OA=OB,4 0 B 是等腰直角三角形,Z.BAC=4 5 ,:C、。关于4 B 对称,/.DAB=NB 4 C =4 5 ,ADAC=9 0 ,v C(-2,0),.-.AC=O A-O C =2 =AD,.D(-4,2),由。(4,2),G(2,0)可得直线D G 解析式为y =-1 x +|,在丫=-1刀+:中,令 =0 得y =g F(0,|),5 =%+4X=V _ 1 丫
13、 a 2 得/-5X+3由5-2LE.的坐标为(一发,F 的坐标为(。,9,故选:C.作C(-2,0)关于y 轴的对称点G(2,0),作C(2,0)关于直线y =x +4 的对称点。,连接4 D,连接D G 交2 B 于E,交y 轴于F,此时A C E F 周长最小,由y =x +4 得以一4,0),8(0,4),Z.BAC=4 5,根据C、D 关于4 B 对称,可得。(一 4,2),直线D G 解析式为y =-,+1,即可得F(0,|),由”.】丫*2 得以_|,|).本题考查与一次函数相关的最短路径问题,解题的关键是掌握用对称的方法确定A CEF周长最小时,E、F 的位置.1 3.【答案】
14、x-2【解析】解:(%-16 若 2 x(T,)解不等式得:x 4,解不等式得:x-2;所以不等式组的解集为:x 12 o故答案为:6列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.15.【答案】120【解析】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为相.由题意得5谢 而树=nr2,I底面周长=2兀 r,个圆锥体的底面积是其表面积的;,4S扇形=3s底面面积=3-rtr
15、2,I扇形瓠长=I底面周长=271T.由S扇形=11扇形瓠长x R得3nr 2=1 x 2nr X R,故 R=3r.脚扇形弧长=署得:c nnx32nr=-,180解得 7 1=120.故答案为:120.根据圆锥的底面积其表面积的;,则得到圆锥底面半径和母线长的关系,根据圆锥侧面4展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.本题通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.1 6 .【答案】1 2 1【解析】解:当10WXW20时,设、=依+上 把(1 0,2
16、 0),(2 0,1 0)代入可得:(1 0 k+b=2 0l 2 0/c +d =1 0 解 得 仁 益二 每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=-x+3 0,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x-8)y=(x 8)(x+3 0)x2+3 8 x-2 4 0 =(%1 9)2+1 2 1,v -1 +6 x (1 0 -8)2 =1.5 6,故答案为:8;1.5 6;如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.5 6,又因为两个年级的平均数相同,九年级
17、的成绩的波动小,所以应该给九年级颁奖;(3)八年级的获奖率为:(10+7+11)+50=56%,九年级的获奖率为:(14+13+6)+50=66%,v 66%56%,九年级的获奖率高.(1)分别求出两个年级的平均数即可;(2)分别估计众数和方差的定义解答即可;根据两个年级众数和方差解答即可;(3)根据题意列式计算即可.本题主要考查了中位数、众数、方差以及平均数,掌握各个概念和计算方法是解题的关键.2 0.【答案】(1)证明:v CF/AB,Z.ADF=/.CFD,/.DAC=/.FCA,点E是AC的中点,:.AE=CE,A D E CFE(AAS),AD=CF;(2)解:当AC J.BC时,四
18、边形4CCF是菱形,证明如下:由(1)知,AD=CF,AD/CF,四边形力DCF是平行四边形,AC 1 BC,.4BC是直角三角形,点。是4B的中点,CD=-AB=AD,2四边形ADCF是菱形.【解析】(1)由C F/4 B,得44DF=乙 CFD,.DAC=/.FCA,又4E=CE,可证 ADEzaCFEAAS),即得4D=CF;(2)由4)=CF,AD/C F,知四边形4DCF是平行四边形,若4 C,B C,点。是AB的中点,可得=即得四边形40CF是菱形.本题考查全等三角形的判定与性质及菱形的判定,解题的关键是掌握全等三角形判定定第18页,共24页理及菱形的判定定理.21.【答案】解:(
19、1)设原计划每天改造管网尤米,则实际施工时每天改造管网(l+20%)x米,由题意得:等3600(l+20%)X=10,解得:x=60,经检验,x=60是原方程的解,且符合题意.此时,60 x(1+20%)=72(米).答:实际施工时,每天改造管网的长度是72米;(2)设以后每天改造管网还要增加m米,由题意得:(40-20)(72+m)2 3600-72 x 20,解得:m 36.答:以后每天改造管网至少还要增加36米.【解析】(1)设原计划每天改造管网x米,则实际施工时每天改造管网(l+20%)x米,根据比原计划提前10天完成任务建立方程求出其解就可以了;(2)设以后每天改造管网还要增加m米,
20、根据总工期不超过40天建立不等式求出其解即可.本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,在解答时找到相等关系和不相等关系建立方程和不等式是关键.22.【答案】解:过点4作4 M l E”于M,过点C作CN 1 E”于N,由题意知,AM=BH,CN=DH,AB=MH,在Rt/M M E中,Z.EAM=26.6,二 tanz.EAM=,AM.,EM EH-M H 45-39.%I/A AM-=-X-=12 术,tanzEAM tan26.6 0.5BH=A M =12米,BD=20,二。=8 0-8 H =8米,CN=8米,在RMENC中,Z.ECN=76,:.tan
21、/ECN=,CN:.EN=CN-tan乙ECN 土 8 x 4.01=32.08米,CD=NH=EH-EN=12.92*13(米),即古槐的高度约为13米.【解析】过点4作力M J.EH于M,过点C作CN J.EH于N,在RtzAME中,根据锐角三角函数求出4M=12米,进而求出CN=8米,再在RtAENC中,根据锐角三角函数求出EN=32.08米,即可求出答案.此题主要考查解直角三角形的应用-仰角俯角问题,作出辅助线构造出直角三角形是解本题的关键.23.【答案】解:(1)直线y=px+3与y轴交点为B,B(0,3),即 OB=3,点 4 的横坐标为2,S&AOB=-x 3 x 2 3,SAA
22、OB:SCOD=3:4,S&COD=4,设C(m,5Ik.-m 一 =4,2 m解得k=8,点Z(2,q)在双曲线y=3上,q=4,把点/(2,4)代入 y=px+3,得P,fc=8,p=-;V C(m,5E(m,|zn+3),OE将四边形BOCE分成两个面积相等的三角形,第20页,共24页S&BOE=SCOE,SBOE=|m,S6C0F=y(|m +3)-4,|m=y(|m +3)-4,解得m=4或m=-4(不符合题意,舍去),点 C的坐标为(4,2).【解析】(1)根据解析式求出B点的坐标,根据4 点的坐标和B点的坐标得出三角形AOB的面积,根据面积比求出三角形C。的面积,设出C点的坐标,
23、根据面积求出k的值,再用待定系数法求出p即可;(2)根据C点的坐标得出E点的坐标,再根据面积相等列出方程求解即可.本题主要考查反比例函数的图形和性质,一次函数的图象和性质,熟练掌握一次函数和反比例函数的图象和性质及待定系数法求函数解析式是解题的关键.24.【答案】(1)证明:在40P和AEOF中,0A=0E乙AOD=4EOD,.OF=OF AOF EOF(SAS),/.OAF=Z.OEF,BC与。相切,OE 1 FC,/.OAF=LOEF=90,即。4 1 4 户,v。4是。的半径,4F是。的切线;(2)解:在尸中,ACAF=90,FC=10,AC=6,AF=!FC2-A C2=8.Z.OCE
24、=Z.FCA=90,OEC-A FAC,AF CF设。的半径为r,则3=答,o 1 U解得r=I,o在RtAFAO中,/.FAO=90,AF=8,AO=-,OF=yjAF2+AO2=|V10,FD=OF-OD=-/1 0-3 3即FD的长为g VTU-1.【解析】(1)根据S4S证/O F三E O F,得出乙。4尸=4OEF=90。,即可得出结论;(2)根据勾股定理求出4尸,证OEC/M C,设圆。的半径为r,根据线段比例关系列方程求出,利用勾股定理求出。入 最后根据FD=OF。求出即可.本题主要考查切线的判定和性质,熟练掌握切线的判定和性质是解题的关键.25.【答案】(1)解:由题意得,=-
25、12x(-1),lc=3 .尸了,(C =3 二 次函数的表达式为:y=-%2-2x 4-3;(2)证明:当工=-1时,y=-l 2 x(l)+3=4,D(L4),由一-2%+3=0得,=-3,%2=1,4(_3,0),/.AD2=25,v C(0,3),A CD2=2,AC2=18,A AC2+CD2=AD2,乙ACD=90,tanZ-DAC=乎=AC 3y/2 3 乙BOC=90,A tanZ-BCO=oc 3Z.DAC=Z-BCO;(3)解:如图,第22页,共24页 DE/FD,DEC4 DEF,.生=经1=色=2,CE DE CD FD1=2DE=2,CF=CE=2,乃的关系式为:y=
26、(x 2)2+1,由一(2)2+1=0 得,x=3 或x=1,M(3,0),当 =0时,y=-3,N(0,_3),设 P(2,m),当MNQP时,:,MN/PQ,PQ=MN,.Q点的横坐标为-1,当为=-1时,y=-(-1 -2尸 +1=-8,(2(-1,8),当 oMNPQ 时,同理可得:点;Q横坐标为:5,当 =5时,y=(5 2)2+1=-8,(5,-8),综上所述:点Q(1,8)或(5,8).【解析】(1)根据抛物线对称轴和点C坐标分别确定b和c的值,进而求得结果;(2)根据点4 D,C坐标可得出4D,AC,CC的长,从而推出三角形4DC为直角三角形,进而得出NZMC和NBC。的正切值相等,从而得出结论;(3)先得出yi的顶点,进而得出先抛物线的表达式,从而求得M和N的坐标,点M,N,P,Q为顶点的四边形是平行四边形分为oMNQP和mMNPQ,根据M,N和点P的横坐标可以得出Q点的横坐标,进而求得结果.本题考查了求二次函数的表达式,勾股定理的逆定理,相似三角形的判定和性质,平行四边形的性质和分类等知识,解决问题的关键熟练掌握有关基础知识.第24页,共24页