《高考数学(理科)全真模拟考试试题(一).pdf》由会员分享,可在线阅读,更多相关《高考数学(理科)全真模拟考试试题(一).pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、惠州市明日星培训中心高考数学(理科)全真模拟考试试题(一)本试卷分选择题和非选择题两部分,满 分15 0分。考试时间120分钟。注意事项:1.答卷前,考生要务必填写答题卷上的有关项目。2.选择题每小题选出答案后,用2B铅笔把答案填在答题卡相应的位置上。3 .非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。4 .考生必须保持答题卷的整洁,考试结束后,净答题卷交回。5 .参考公式:体 面 卜h第I卷(选 择 题 共4 0分)一、选择题:本大题共8小题,每小题5
2、分,共4 0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已右集合M=#/+3%4 1则 M C N=()A.(-4,1)B.(-4,)C.(,1)D.(1,+)2.在等差数列 a“中,已知q =1,4+%=10,4 =3 9,则”()A.19 B.20 C.21 D.223 .在平面直角坐标系中,点(-1,a)在直线x +y 3 =0的右上方,则a的取值范围是()A.(1,4)B.(-1,4)4.定积分:%(16-/)小等于A.半径为4的球的体积C.半径为4的半球的体积C.(-8,4)D.(4,+0)()B.半径为4的四分之一球的体积D.半径为4的球面积5 .如右图,在 A 4
3、 6 c 中,A 8 =8 C =4,N A 6 C =3 0 ,B C 上的高,则A O AC的值等于A.0C.8B.4D.-46 .某银行开发出一套网银验证程序,验证规则如下:(1)数字,这两组数字存在一种对应关系;第一组数字。,仇c对应于第二组数字2a +,c +2i ,a +3 c ;(2)时程序在电脑屏幕上依次显示产第二组数字,由用主要计算出第一组数字后依次输入电脑,只有准确输入方能进入,其流程图如图,试问用户应输入()A.3,4,5 B.4,2,6C.2,6,4 D.3,5,77 .若圆0 方程为(X +1)2 +。+1)2 =4,圆。2 方程为(x -3)2 +(y -2)2 =
4、1,则方程(x +1)2+(y +1)2 -4=(一 3)2+(y 一 2一1 表示的轨迹是()A.线段O Q 5 2 的中垂线B .过两圆内公切线交点且垂直线段0 1。2 的直线C.两圆公共弦所在的直线D.一条直线且该直线上的点到两圆的切线长相等8 .设/(X)=d+l o g 2(x+1),则对任意实数a,瓦a +bNO 是 f(a)+/S)N0的()A.充分必耍条件 B.充分而非必要条件C.必要而非充分条件 D.既非充分也非必要条件第 n卷(非 选 择 题 共 no分)二、填空题:(本大题共7小题,第 1 4、1 5 小题任选一题作答,多选的按第1 4小题给分,共 3 0 分)9.i 为
5、虚数单位,若复数z 满足/(z+i)=Z-3 i,则l/(2 i)+ll=。1 0 .已 知 正 实 数 满 足 x y =l,则(+y)()+x)的 最 小 值 为。y x1 1 .关于龙的方程/一缶p =o的解集是 s i n d c o s。,则实数p=。1 2 .已知函数/(外=|“厂+2+1,(,)有3个零点,则实数。的取值范围是_ _ _ _。ax-3,(x 0)x-2 y +5 0,1 3 .设女 R,A=x,y I 3-xN0,B=(x,y)x2+y2 0,的取值范围是。选做题:以下两题任选一道作答,两题都答的按第1 4题正误给分。1 4.(极坐标与参数方程选做题)已知曲线C
6、的极坐标方程是夕=6 s i n 6,以极点为平在直角坐标系的原点,极轴为X的正半轴,建立平面直角坐标系,直线/的参数方程是x=y/2t-1。为参数),则直线/与曲线C 相交所得的弦的弦长为1 5 .(几何证明选讲选做题)如右图所示,A C 和 A B分别是圆0的切线,且 0 C=3,A B+4,延长A O 到 D 点,则A 4 6O 的面积是。三、解答题:(本大题共6小题,共 8 0 分,解答须写出文字说明、证明过程和演算步骤)7T1 6 .(本小题满分1 2 分)已知函数/(x)=4c o s x-s i n(x +)+。的最大值为2。6(1)求a的值及/(x)的最小正周期;(2)求/(x
7、)在区间 0,划 上的单调递增区间。1 7 .(本小题满分1 2 分)第 1 6 届亚运会将于2 0 1 0 年 1 1 月 1 2 日至2 7 日在中国广州进行,为了搞好接待工作,组委会招募了 1 6 名男志愿者和1 4名女志愿者,调查发现,男、女志愿者中分别有1 0 人和6人喜爱运动,其余不喜爱。(1)根据以上数据完成以下2 X 2 列联表:男女总计喜爱运动1 06不喜爱运动1 61 43 0(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.1 0 的前提下认为性别与喜爱运动有关?(3)从女志原者中抽取2 人参加接待工作,若其中喜爱运动的人数为求右的分布列和均值。参考公式:Kn(a
8、d-be)2(a+b)(c+d)(a+c)(b+d),其中 =a+b +c +d.参考数据:P(K2k0)0.7 0 81.3 232.7 0 66.6 3 501 8.(本小题满分1 4分)已知四棱锥P A B C D的三视图如下右图所示,其中正(主)视图与侧(左)视为直角三角形,俯视图为正方形。(1)求四棱锥P A B C D的体积;(2)若E是侧棱P A上的动点。问:不论点E在P A的任何位置上,是否都有B D 1 C E?请证明你的结论?(3)求二面角D俯视图1 9 .(本题满分 1 4 分)已 知/(x)是/(x)的导函数,/(x)=ln(x +1)+m -2e R ,且函数f(x)
9、的图象过点(0,-2)。(1)求函数y =f(x)的表达式;(2)设g(x)=F q/(x),(a 0 )若g(x)0在定义域内恒成立,求实数。的取x +1值范围。20 .(本小题满分1 4分)如图所示,椭圆C:=+A =l(a力0)的 离 心 率 为 幺 且a b-5A (0,1)是椭圆C的顶点。(1)求椭圆C的方程;(2)过点A作斜率为1的直线/,在直线/上求一点M,使得以椭圆C的焦点为焦点,且过点M的双曲线E的实轴最长,并求此双曲线E的方程。(第 20 题图)21 .(本 小 题 满 分1 4分)已 知 数 列 q的 相 邻 两 项 川 是 关 于X的方程f 2 x +d =0(n e N*)的两实根,且q=L(1)求证:数列 4 ;x 2 是等比数列;(2)设S“是数列 q的前项和,求S.;(3)问是否存在常数4,使得勿/lS“对V e N*都成立,若存在,求出九的取值范围,若不存在,请说明理由。