山东省淄博市临淄区2023年中考适应性考试数学试题含解析.doc

上传人:lil****205 文档编号:88000537 上传时间:2023-04-19 格式:DOC 页数:21 大小:690KB
返回 下载 相关 举报
山东省淄博市临淄区2023年中考适应性考试数学试题含解析.doc_第1页
第1页 / 共21页
山东省淄博市临淄区2023年中考适应性考试数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《山东省淄博市临淄区2023年中考适应性考试数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省淄博市临淄区2023年中考适应性考试数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1不等式组的解在数轴上表示为( )ABCD2一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是(

2、)A120B135C150D1653如图,在ABC中,AED=B,DE=6,AB=10,AE=8,则BC的长度为( )ABC3D4两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )A无法求出B8C8D165点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3By2y3y1Cy3y2y1Dy2y1y36若关于x的一元二次方程x22xk0没有实数根,则k的取值范围是( )Ak1Bk1Ck1Dk17不等式的解集在数轴上表示正确的是( )ABCD8若数a使关于x的不等式组有解且所

3、有解都是2x+60的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A5B4C3D293的绝对值是()A3B3C-D10如图所示,ab,直线a与直线b之间的距离是( )A线段PA的长度B线段PB的长度C线段PC的长度D线段CD的长度11如图,AB为O的直径,C、D为O上的点,若ACCDDB,则cosCAD ( )ABCD12某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同设现在每天生产x台机器,根据题意可得方程为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13计算:()1(5)0

4、_14O的半径为10cm,AB,CD是O的两条弦,且ABCD,AB=16cm,CD=12cm则AB与CD之间的距离是 cm15一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_16已知点P在一次函数y=kx+b(k,b为常数,且k0,b0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上(1)k的值是 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CEx轴于点

5、E,记S1为四边形CEOB的面积,S2为OAB的面积,若=,则b的值是 17如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_18A如果一个正多边形的一个外角是45,那么这个正多边形对角线的条数一共有_条B用计算器计算:tan6327_(精确到0.01)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在ABC中,点D是AB边的中点,点E是CD边的中点,过点C作CFAB交AE的延长线于点F,连接BF.求证:DB=CF;(2)如果AC=BC,试判

6、断四边形BDCF的形状,并证明你的结论.20(6分)如图,抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PFx轴于点F,交直线CD于点E,设点P的横坐标为m(1)求抛物线解析式并求出点D的坐标;(2)连接PD,CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当CPE是等腰三角形时,请直接写出m的值21(6分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图和图,请根据相关信息,

7、解答下列问题:(1)本次接受随机抽样调查的中学生人数为_,图中m的值是_;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数22(8分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数23(8分)先化简,再求值:,其中,24(10分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多

8、用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间25(10分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:补全条形统计图,“体育”对应扇形的圆心角是 度;根据以上统计分析,估计该校名学生中喜爱“娱乐”的有 人;在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率26(12分)某商场计划购进一批甲、

9、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?27(12分)已知,如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E求证:DE是O的切线;若DE=6cm,AE=3cm,求O的半径参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析

10、】先解每一个不等式,再根据结果判断数轴表示的正确方法【详解】解:由不等式,得3x5-2,解得x1,由不等式,得-2x1-5,解得x2,数轴表示的正确方法为C故选C【点睛】考核知识点:解不等式组.2、C【解析】这个扇形的圆心角的度数为n,根据弧长公式得到20=,然后解方程即可【详解】解:设这个扇形的圆心角的度数为n,根据题意得20=,解得n=150,即这个扇形的圆心角为150故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)3、A【解析】AED=B,A=AADEACB,DE=6,AB=10,AE=8,解得BC.故选A.4、D【解析】试题分析:设AB于小圆切于点

11、C,连接OC,OBAB于小圆切于点C,OCAB,BC=AC=AB=8=4cm圆环(阴影)的面积=OB2-OC2=(OB2-OC2)又直角OBC中,OB2=OC2+BC2圆环(阴影)的面积=OB2-OC2=(OB2-OC2)=BC2=16故选D考点:1垂径定理的应用;2切线的性质5、D【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1x20x1,判断出三点所在的象限,再根据函数的增减性即可得出结论【详解】反比例函数y=中,k=10,此函数图象的两个分支在一、三象限,x1x20x1,A、B在第三象限,点C在第一象限,y10,y20,y10,在第三象限y随x的增大而减小,y1y2,

12、y2y1y1故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键6、C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根7、B【解析】根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可【详解】解:解:移项得,x3-2,合并得,x1;在数轴上表示应包括1和它左边的部分,如下:;故选:B【点睛】本题考查

13、了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示8、D【解析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可【详解】不等式组整理得:,由不等式组有解且都是2x+60,即x-3的解,得到-3a-13,即-2a4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键9、B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质

14、得:|-1|=1故选B【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.10、A【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:ab,APBC两平行直线a、b之间的距离是AP的长度根据平行线间的距离相等直线a与直线b之间的距离AP的长度故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义.11、D【解析】根据圆心角,弧,弦的关系定理可以得出=,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值【详解】解:=,故选D【点睛】本题考查圆心角,弧,弦,圆周

15、角的关系,熟记特殊角的三角函数值是解题的关键12、A【解析】根据现在生产500台机器所需时间与原计划生产350台机器所需时间相同,所以可得等量关系为:现在生产500台机器所需时间=原计划生产350台机器所需时间【详解】现在每天生产x台机器,则原计划每天生产(x30)台机器依题意得:,故选A【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】分别根据负整数指数幂,0指数幂的化简计算出各数,即可解题【详解】解:原式211,故答案为1【点睛】此题考查负整数指数幂,0指数幂的化简,难度不大14、2或14【解

16、析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cm.AB与CD之间的距离为14cm或2cm.故答案为:2或14.15、【解析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出

17、2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比16、(1)-2;(2)【解析】(1)设点P的坐标为(m,n),则点Q的坐标为(m1,n+2),依题意得:,解得:

18、k=2.故答案为2.(2)BOx轴,CEx轴,BOCE,AOBAEC.又, 令一次函数y=2x+b中x=0,则y=b,BO=b;令一次函数y=2x+b中y=0,则0=2x+b,解得:x=,即AO=.AOBAEC,且,,AE=,AO=,CE=BO=b,OE=AEAO=.OECE=|4|=4,即=4,解得:b=,或b= (舍去).故答案为.17、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详解】:第1个正方形的面积为:1+421=5=51;第2个正方形的面积为:5+42=25=52;第3个正方形的

19、面积为:25+42=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积18、20 5.1 【解析】A、先根据多边形外角和为360且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得【详解】A、根据题意,此正多边形的边数为36045=8,则这个正多边形对角线的条数一共有=20,故答案为20;B、tan63272.6462.0015.1,故答案为5.1【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用三、解答

20、题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)证明见解析;(2)四边形BDCF是矩形,理由见解析.【解析】(1)证明:CFAB,DAECFE又DECE,AEDFEC,ADEFCE,ADCFADDB,DBCF(2)四边形BDCF是矩形证明:由(1)知DBCF,又DBCF,四边形BDCF为平行四边形ACBC,ADDB,CDAB四边形BDCF是矩形20、(1)y=x2+2x+3,D点坐标为();(2)当m=时,CDP的面积存在最大值,最大值为;(3)m的值为 或 或【解析】(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;(2)设P

21、(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到SPCD=(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值【详解】(1)把A(1,0),C(0,3)分别代入y=x2+bx+c得,解得,抛物线的解析式为y=x2+2x+3;把C(0,3)代入y=x+n,解得n=3,直线CD的解析式为y=x+3,

22、解方程组,解得 或,D点坐标为(,);(2)存在设P(m,m2+2m+3),则E(m,m+3),PE=m2+2m+3(m+3)=m2+m,SPCD=(m2+m)=m2+m=(m)2+,当m=时,CDP的面积存在最大值,最大值为;(3)当PC=PE时,m2+(m2+2m+33)2=(m2+m)2,解得m=0(舍去)或m=;当CP=CE时,m2+(m2+2m+33)2=m2+(m+33)2,解得m=0(舍去)或m=(舍去)或m=;当EC=EP时,m2+(m+33)2=(m2+m)2,解得m=(舍去)或m=,综上所述,m的值为或或【点睛】本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次

23、函数性质,运用数形结合思想.21、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可【详解】(1)本次接受随机抽样调查的中学

24、生人数为6024%=250人,m=100(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000=160000人【点睛】本题主要考查数据的收集、 处理以及统计图表.22、(1)125;(2)125;(3)BOC=90+n【解析】如图,由BO、CO是角平分线得ABC=21,ACB=22,再利用三角形内角和得到ABC+ACB+A=180,则21+22+A=180,接着再根据三角形内角和得到1+2+BOC=180,利用等式的性质进行变换可得BOC=90+A,然后根据此结

25、论分别解决(1)、(2)、(3)【详解】如图,BO、CO是角平分线,ABC=21,ACB=22,ABC+ACB+A=180,21+22+A=180,1+2+BOC=180,21+22+2BOC=360,2BOCA=180,BOC=90+A,(1)ABC=50,ACB=60,A=1805060=70,BOC=90+70=125;(2)BOC=90+A=125;(3)BOC=90+n【点睛】本题考查了三角形内角和定理:三角形内角和是180主要用在求三角形中角的度数:直接根据两已知角求第三个角;依据三角形中角的关系,用代数方法求三个角;在直角三角形中,已知一锐角可利用两锐角互余求另一锐角23、9【解

26、析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】 当,时,原式 【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法24、骑共享单车从家到单位上班花费的时间是1分钟【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得: 解得x=1经检验,x=1是原方程的解,且符合题意答:骑共享单车从家到单位上班花费的时间是1分钟25、(1)72;(2)700;(3)【解析】试题分析:(1)根据动画类人数及其百分比求得总

27、人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案试题解析:(1)调查的学生总数为6030%=200(人),则体育类人数为200(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360=72;(2)估计该校2000名学生中喜爱“娱乐”的有:2000=700(人),(3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P(2名学生来自不同班)=考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体26、(1)甲

28、,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案【解析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解【详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则

29、购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用27、解:(1)证明见解析;(2)O的半径是7.5cm【解析】(1)连接OD,根据平行线的判断方法与性质可得ODE=DEM=90,且D在O上,故DE是O的切线(2)由直角三角形的特殊性质,可得AD的长,又有ACDADE根据相似三角形的性质列出比例式,代入数据即可求得圆的半径【详解】(1)证明:连接ODOA=OD,OAD=ODAOAD=DAE,ODA=DAEDOMNDEMN,ODE=DEM=90即ODDED在O上,OD为O的半径,DE是O的切线(2)解:AED=90,DE=6,AE=3,连接CDAC是O的直径,ADC=AED=90CAD=DAE,ACDADE则AC=15(cm)O的半径是7.5cm考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁