山东省潍坊市诸城龙源校2023年中考数学模拟试题含解析.doc

上传人:lil****205 文档编号:88000477 上传时间:2023-04-19 格式:DOC 页数:14 大小:706.50KB
返回 下载 相关 举报
山东省潍坊市诸城龙源校2023年中考数学模拟试题含解析.doc_第1页
第1页 / 共14页
山东省潍坊市诸城龙源校2023年中考数学模拟试题含解析.doc_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《山东省潍坊市诸城龙源校2023年中考数学模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省潍坊市诸城龙源校2023年中考数学模拟试题含解析.doc(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某排球队名场上队员的身高(单位:)是:,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )A平均数变小,方差变小B平均数变小,方差变大C平均数变大,方差变小D平均数变大,方差变大2下列计算或化简正确的是()ABCD3观察

2、下列图形,则第n个图形中三角形的个数是()A2n+2B4n+4C4n4D4n4已知点M (2,3 )在双曲线上,则下列一定在该双曲线上的是( )A(3,-2 )B(-2,-3 )C(2,3 )D(3,2)5一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=56抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,307下列图形中,既是中心对称图形又是轴对称图形的是()A

3、BCD8的倒数的绝对值是()ABCD9如图1,在等边ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则ABC的面积为( ) A4BC12D10某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知双曲线经过点(1,2),那么k的值等于_.12如图是一个立体图形的三种视图,则这个立体图形的体积(结果保留)为_.13如图1,在平面直角坐标系中,将ABCD放置在第一象限,且ABx轴,直线yx从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得

4、的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_14已知,则=_15当a,b互为相反数,则代数式a2+ab2的值为_16已知正比例函数的图像经过点M( )、,如果,那么_(填“”、“”、“”)三、解答题(共8题,共72分)17(8分)关于的一元二次方程有实数根求的取值范围;如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值18(8分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1

5、.5m,CD=8m,求树高19(8分)如图,ACB与ECD都是等腰直角三角形,ACB=ECD=90,点D为AB边上的一点,(1)求证:ACEBCD;(2)若DE=13,BD=12,求线段AB的长20(8分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售市场调查反映:每降价1元,每星期可多卖30件已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?21(

6、8分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动a= ,b= ,点B的坐标为 ;当点P移动4秒时,请指出点P的位置,并求出点P的坐标;在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间22(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决

7、定提价销售设每天销售量为y本,销售单价为x元请直接写出y与x之间的函数关系式和自变量x的取值范围;当每本足球纪念册销售单价是多少元时,商店每天获利2400元?将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?23(12分) 2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有 人;在被调查者中参加“3科”课外辅导的有 人(2)将

8、条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人24先化简,再求值:先化简(x+1),然后从2x的范围内选取一个合适的整数作为x的值代入求值参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为=188,方差为S2=;换人后6名队员身高的平均数为=187,方差为S2=188187,平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,

9、xn的平均数为,则方差S2=(x1-)2+(x2-)2+(xn-)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2、D【解析】解:A不是同类二次根式,不能合并,故A错误;B,故B错误;C,故C错误;D,正确故选D3、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n故选D考点:规律型:图形的变化类4、A【解析】因为点M(-2,3)在双曲线上,所以x

10、y=(-2)3=-6,四个答案中只有A符合条件故选A5、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.6、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握7、D

11、【解析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A. 此图形旋转180后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;B. 此图形旋转180后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;C. 此图形旋转180后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D. 此图形旋转180后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形

12、的定义.8、D【解析】直接利用倒数的定义结合绝对值的性质分析得出答案【详解】解:的倒数为,则的绝对值是:.故答案选:D.【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质.9、D【解析】分析:由图1、图2结合题意可知,当DPAB时,DP最短,由此可得DP最短=y最小=,这样如图3,过点P作PDAB于点P,连接AD,结合ABC是等边三角形和点D是BC边的中点进行分析解答即可.详解:由题意可知:当DPAB时,DP最短,由此可得DP最短=y最小=,如图3,过点P作PDAB于点P,连接AD,ABC是等边三角形,点D是BC边上的中点,ABC=60,ADBC,DPA

13、B于点P,此时DP=,BD=,BC=2BD=4,AB=4,AD=ABsinB=4sin60=,SABC=ADBC=.故选D.点睛:“读懂题意,知道当DPAB于点P时,DP最短=”是解答本题的关键.10、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】分析:根据点在曲线上点的坐

14、标满足方程的关系,将点(1,2)代入,得:,解得:k112、250【解析】从三视图可以看正视图以及左视图为矩形,而俯视图为圆形,故可以得出该立体图形为圆柱由三视图可得圆柱的半径和高,易求体积【详解】该立体图形为圆柱,圆柱的底面半径r=5,高h=10,圆柱的体积V=r2h=5210=250(立方单位)答:立体图形的体积为250立方单位故答案为250.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查;圆柱体积公式=底面积高13、1【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当

15、直线经过D点,设其交AB与E,则DE=2 ,作DFAB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB144,当直线经过点D,设其交AB于点E,则DE2 ,作DFAB于点F,yx于x轴负方向成45角,且ABx轴,DEF45,DFEF,在直角三角形DFE中,DF2+EF2DE2,2DF21DF2,那么ABCD面积为:ABDF421,故答案为1【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线14、【解

16、析】由可知值,再将化为的形式进行求解即可.【详解】解:,原式=.【点睛】本题考查了分式的化简求值.15、1【解析】分析:由已知易得:a+b=0,再把代数式a1+ab-1化为为a(a+b)-1即可求得其值了.详解:a与b互为相反数,a+b=0,a1+ab-1=a(a+b)-1=0-1=-1.故答案为:-1.点睛:知道“互为相反数的两数的和为0”及“能够把a1+ab-1化为为a(a+b)-1”是正确解答本题的关键.16、【解析】分析:根据正比例函数的图象经过点M(1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题详解:设该正比例函数的解析式为y=kx,则1=1k,得:k=0.5,

17、y=0.5x正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1x1,y1y1故答案为点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答三、解答题(共8题,共72分)17、(1);(2)的值为【解析】(1)利用判别式的意义得到,然后解不等式即可;(2)利用(1)中的结论得到的最大整数为2,解方程解得,把和分别代入一元二次方程求出对应的,同时满足【详解】解:(1)根据题意得,解得;(2)的最大整数为2,方程变形为,解得,一元二次方程与方程有一个相同的根,当时,解得;当时,解得,而,的值为【点睛】本题考查了根的判别式:一元二次方程的根与有如下

18、关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根18、树高为 5.5 米【解析】根据两角相等的两个三角形相似,可得 DEFDCB ,利用相似三角形的对边成比例,可得, 代入数据计算即得BC的长,由 ABAC+BC ,即可求出树高.【详解】DEFDCB90,DD, DEFDCB ,DE0.4m,EF0.2m,CD8m, CB4(m),ABAC+BC1.5+45.5(米)答:树高为 5.5 米.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型19、(3)证明见解析; (3)AB=3.【解析】(3)由等腰直角三角形得出AC=BC

19、,CE=CD,ACB=ECD=90,得出BCD=ACE,根据SAS推出ACEBCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在RtAED中,由勾股定理求出DE即可【详解】证明:(3)如图,ACB与ECD都是等腰直角三角形,AC=BC,CE=CD,ACB=ECD=90,ACBACD=DCEACD,BCD=ACE,在BCD和ACE中,BC=AC,BCD=ACE,CD=CE,BCDACE(SAS);(3)由(3)知BCDACE,则DBC=EAC,AE=BD=33,CAD+DBC=90,EAC+CAD=90,即EAD=90,AE=33,ED=33,AD=5,AB=AD+BD=33+5=3

20、【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3全等三角形的判定与性质;3等腰直角三角形20、(1)y=30x+1;(2)每件售价定为55元时,每星期的销售利润最大,最大利润2元;(3)该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【解析】(1) 每星期的销售量等于原来的销售量加上因降价而多销售的销售量, 代入即可求解函数关系式;(2) 根据利润=销售量(销售单价-成本) , 建立二次函数, 用配方法求得最大值.(3) 根据题意可列不等式, 再取等将其转化为一元二次方程并求解, 根据每星期的销售利润所在抛物线开口向下

21、求出满足条件的x的取值范围, 再根据 (1) 中一元一次方程求得满足条件的x的取值范围内y的最小值即可.【详解】(1)y300+30(60x)30x+1(2)设每星期利润为W元,W(x40)(30x+1)30(x55)2+2x55时,W最大值2每件售价定为55元时,每星期的销售利润最大,最大利润2元(3)由题意(x40)(30x+1)6480,解得52x58,当x52时,销售300+308540,当x58时,销售300+302360,该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件【点睛】本题主要考查一次函数的应用和二次函数的应用,注意综合运用所学知识解题.21、(

22、1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒【解析】试题分析:(1)根据可以求得的值,根据长方形的性质,可以求得点的坐标;(2)根据题意点从原点出发,以每秒2个单位长度的速度沿着的线路移动,可以得到当点移动4秒时,点的位置和点的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点移动的时间即可试题解析:(1)a、b满足a4=0,b6=0,解得a=4,b=6,点B的坐标是(4,6),故答案是:4,6,(4,6);(2)点P从原点出发,以每秒2个单位长度的速度沿着OCBAO的线路移动,24=8,OA=4,OC=6,

23、当点P移动4秒时,在线段CB上,离点C的距离是:86=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:52=2.5秒,第二种情况,当点P在BA上时,点P移动的时间是:(6+4+1)2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.22、(1)y=10x+740(44x52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价

24、定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元【解析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x44)元,每天销售量减少10(x44)本,所以y=30010(x44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x40)(10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到w=(x40)(10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可【详解】(1)y=30

25、010(x44),即y=10x+740(44x52);(2)根据题意得(x40)(10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x40)(10x+740)=10x2+1140x29600=10(x57)2+2890,当x57时,w随x的增大而增大,而44x52,所以当x=52时,w有最大值,最大值为10(5257)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元【点睛】本题考查了二次函数的应用,一元二次方程的应用,解决二次函数应用

26、类问题时关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围23、(1)50,10;(2)见解析.(3)16.8万【解析】(1)结合条形统计图和扇形统计图中的参加“3科”课外辅导人数及百分比,求得总人数为50人;再由总人数减去参加“1科”,“2科”,“4科”课外辅导人数即可求出答案.(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,由扇形统计图可知参加“4科”课外辅导人数占比为10%,故参加“4科”课外辅导人数的有5人.(3)因为参加“1科”和“2科”课外辅导人数占比为,所以全市参与辅导科目不多于2科的人数为2

27、4 16.8(万).【详解】解:(1)本次被调查的学员共有:1530%50(人),在被调查者中参加“3科”课外辅导的有:5015205010%10(人),故答案为50,10;(2)由(1)知在被调查者中参加“3科”课外辅导的有10人,在被调查者中参加“4科”课外辅导的有:5010%5(人),补全的条形统计图如右图所示;(3)24 16.8(万),答:参与辅导科目不多于2科的学生大约有16.8人【点睛】本题考察了条形统计图和扇形统计图,关键在于将两者结合起来解题.24、,【解析】根据分式的减法和除法可以化简题目中的式子,然后在2 x中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取2、2中的任意一个.【详解】原式,2 x(x为整数)且分式要有意义,所以x10,x10,x0,即x1,1,0,因此可以选取x2时,此时原式.【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x2得到答案.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁