《山东省泰安市东平县实验中学达标名校2023届中考冲刺卷数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省泰安市东平县实验中学达标名校2023届中考冲刺卷数学试题含解析.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1函数yax2与yax+b的图象可能是()ABCD2平面
2、直角坐标系中,若点A(a,b)在第三象限内,则点B(b,a)所在的象限是()A第一象限B第二象限C第三象限D第四象限3如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处4地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A64105B6.4105C6.4106D6.41075如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个
3、D只有1个6如图所示,在ABC中,C=90,AC=4,BC=3,将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BD两点间的距离为( )A2BCD7下列计算正确的是( )Ax2+x2=x4 Bx8x2=x4 Cx2x3=x6 D(-x)2-x2=08如图,点P是AOB外的一点,点M,N分别是AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM2.5cm,PN3cm,MN4cm,则线段QR的长为( )A4.5cmB5.5cmC6.5cmD7cm9要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直
4、线,这里用到的数学知识是()A两点之间的所有连线中,线段最短B经过两点有一条直线,并且只有一条直线C直线外一点与直线上各点连接的所有线段中,垂线段最短D经过一点有且只有一条直线与已知直线垂直10下列函数中,二次函数是( )Ay4x+5Byx(2x3)Cy(x+4)2x2Dy二、填空题(本大题共6个小题,每小题3分,共18分)11下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要_根火柴.12如图,在平面直角坐标系中,将ABO绕点A顺时针旋转到AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将AB1C1绕点B1顺时针旋转到A
5、1B1C2的位置,点C2在x轴上,将A1B1C2绕点C2顺时针旋转到A2B2C2的位置,点A2在x轴上,依次进行下去若点A(,0),B(0,2),则点B2018的坐标为_13已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B连接OC交反比例函数图象于点D,且,连接OA,OE,如果AOC的面积是15,则ADC与BOE的面积和为_14如图,PA、PB是O的切线,A、B为切点,AC是O的直径,P= 40,则BAC= .15如图,在ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),ADE=B=,DE交AB于
6、点E,且tan=,有以下的结论:ADEACD;当CD=9时,ACD与DBE全等;BDE为直角三角形时,BD为12或;0BE,其中正确的结论是_(填入正确结论的序号).16把多项式x325x分解因式的结果是_三、解答题(共8题,共72分)17(8分)已知x11x11求代数式(x1)1+x(x4)+(x1)(x+1)的值18(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周
7、销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?19(8分)如图,在五边形ABCDE中,BCD=EDC=90,BC=ED,AC=AD求证:ABCAED;当B=140时,求BAE的度数20(8分)计算:4cos45+()1+|2|21(8分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以
8、看到点E,且BC2.7米,CD11.5米,CDE120,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度(结果保留根号)22(10分)先化简,再求值:,其中a是方程a(a+1)0的解23(12分)有这样一个问题:探究函数y2x的图象与性质小东根据学习函数的经验,对函数y2x的图象与性质进行了探究下面是小东的探究过程,请补充完整:(1)函数y2x的自变量x的取值范围是_;(2)如表是y与x的几组对应值x43.532101233.54y 0m则m的值为_;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质
9、_24某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象(1)观察图,其中 , ;(2)求第2趟电瓶车距乙地的路程与的函数关系式;(3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】选项中,由图可知:在,;在,所以A错误;选项中,由图可知:在
10、,;在,所以B正确;选项中,由图可知:在,;在,所以C错误;选项中,由图可知:在,;在,所以D错误故选B点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.2、D【解析】分析:根据题意得出a和b的正负性,从而得出点B所在的象限详解:点A在第三象限, a0,b0, 即a0,b0, 点B在第四象限,故选D点睛:本题主要考查的是象限中点的坐标特点,属于基础题型明确各象限中点的横纵坐标的正负性是解题的关键3、D【解析】到三条相互交叉的公路距离相等的地点应是
11、三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解4、C【解析】由科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的
12、绝对值1时,n是负数【详解】解:6400000=6.4106,故选C点睛:此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值5、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点
13、、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答6、C【解析】解:连接BD在ABC中,C=90,AC=4,BC=3,AB=2将ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,AE=4,DE=3,BE=2在RtBED中,BD=故选C点睛:本题考查了勾股定理和旋转的基本性质,解决此类问题的关键是掌握旋转的基本性质,特别是线段之间的关系题目整体较为简单,适合随堂训练7、D【解析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类
14、项;3.同底数幂的乘法;4.幂的乘方与积的乘方8、A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=25cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-25=25(cm),即可得出QR的长RN+NQ=3+25=35(cm)故选A考点:轴对称图形的性质9、B【解析】本题要根据过平面上的两点有且只有一条直线的性质解答【详解】根据两点确定一条直线故选:B【点睛】本题考查了“两点确定一条直线”的公理,难度适中10、B【解析】A. y=-4x+5是一次函数,故此选项错误;B.y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.y=(x+4)2x2
15、=8x+16,为一次函数,故此选项错误;D.y=是组合函数,故此选项错误.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+26个火柴组成,组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.12、(6054,2)【解析】分析:分析题意和图形可知,点B1、B3、B5、在x轴上,点B2、B4、B6、在第一象限内,由已知易得AB=,结合旋转的
16、性质可得OA+AB1+B1C2=6,从而可得点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),即点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到的,由此即可推导得到点B2018的坐标.详解:在AOB中,AOB=90,OA=,OB=2,AB=,由旋转的性质可得:OA+AB1+B1C2=OA+AB+OB=6,C2B2=OB=2,点B2的坐标为(6,2),同理可得点B4的坐标为(12,2),由此可得点B2相当于是由点B向右平移6个单位得到的,点B4相当于是由点B2向右平移6个单位得到,点B2018相当于是由点B向右平移了:个单位得到的,点B2018的
17、坐标为(6054,2).故答案为:(6054,2).点睛:读懂题意,结合旋转的性质求出点B2和点B4的坐标,分析找到其中点B的坐标的变化规律,是正确解答本题的关键.13、1【解析】连结AD,过D点作DGCM,AOC的面积是15,CD:CO=1:3,OG:OM=2:3,ACD的面积是5,ODF的面积是15=,四边形AMGF的面积=,BOE的面积=AOM的面积=12,ADC与BOE的面积和为5+12=1,故答案为:1.14、20【解析】根据切线的性质可知PAC90,由切线长定理得PAPB,P40,求出PAB的度数,用PACPAB得到BAC的度数【详解】解:PA是O的切线,AC是O的直径,PAC90
18、PA,PB是O的切线,PAPBP40,PAB(180P)2(18040)270,BACPACPAB907020故答案为20【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数15、【解析】试题解析:ADE=B,DAE=BAD,ADEABD;故错误;作AGBC于G,ADE=B=,tan=,cos=,AB=AC=15,BG=1,BC=24,CD=9,BD=15,AC=BDADE+BDE=C+DAC,ADE=C=,EDB=DAC,在ACD与DBE中,ACDBDE(ASA)故正确;当BED=90时,由可知:ADEABD,ADB=AED,BED=90,ADB=90,即ADBC,A
19、B=AC,BD=CD,ADE=B=且tan=,AB=15,BD=1当BDE=90时,易证BDECAD,BDE=90,CAD=90,C=且cos=,AC=15,cosC=,CD=BC=24,BD=24-=即当DCE为直角三角形时,BD=1或故正确;易证得BDECAD,由可知BC=24,设CD=y,BE=x,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,0x,0BE故错误故正确的结论为:考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质16、x(x+5)(x5)【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可详解:x3-25x=x(x2-25)
20、=x(x+5)(x-5)故答案为x(x+5)(x-5)点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键三、解答题(共8题,共72分)17、2.【解析】将原式化简整理,整体代入即可解题.【详解】解:(x1)1+x(x4)+(x1)(x+1)x11x+1+x14x+x143x12x3,x11x11原式3x12x33(x11x1)312【点睛】本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.18、(1)y=5x+350;(2)w=5x2+450x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【解
21、析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)(5x+ 350)=5x2+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=5
22、x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值19、(1)详见解析;(2)80【分析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解析】(1)根据ACD=ADC,BCD
23、=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90,ACB=ADE,在ABC和AED中,ABCAED(SAS);解:(2)当B=140时,E=140,又BCD=EDC=90,五边形ABCDE中,BAE=5401402902=80【点睛】考点:全等三角形的判定与性质20、4【解析】分析:代入45角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=点睛:熟记“特殊角的三角函数值、负整数指数幂的意义
24、:(为正整数)”是正确解答本题的关键.21、DE的长度为6+1【解析】根据相似三角形的判定与性质解答即可【详解】解:过E作EFBC,CDE120,EDF60,设EF为x,DFx,BEFC90,ACBECD,ABCEFC,即,解得:x9+2,DE=6+1,答:DE的长度为6+1【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题22、【解析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【详解】解:原式=a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分
25、母不等于0,a=-1,将a=-1代入得,原式=【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.23、(1)任意实数;(2);(3)见解析;(4)当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【解析】(1)没有限定要求,所以x为任意实数,(2)把x3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y2x的自变量x的取值范围是任意实数;故答案为任意实数;(2)把x3代入y2x得,y;故答案为;(3)如图所示;(4)根据图象得,当x2时,y随x的增大而增大;当x2时,y随x的增大而增大故答案
26、为当x2时,y随x的增大而增大;当x2时,y随x的增大而增大【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.24、(1)0.8;2.1;(2);(2)图像见解析,2【解析】(1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;(2)先求出电瓶车的速度,再根据路程=两地间距-速度时间即可得出答案;(2)结合的图象即可画出的图象,观察图象即可得出答案【详解】解:(1),故答案为:0.8;2.1(2)根据题意得:电瓶车的速度为 (2)画出函数图象,如图所示观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过故答案为:2【点睛】本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键