《山东省淄博市临淄区金山中学2022-2023学年中考猜题数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省淄博市临淄区金山中学2022-2023学年中考猜题数学试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图是抛物线y1=ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m0)与抛物线交于A,B两点,下列结论:2a+b=0;abc0;方程ax2+bx+c=3有两个相等的实数根;抛物线与x轴的另一个交点是(1,0);当1x4时,有y2y1,其中正确的是( )ABCD2如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30方向上的B处,这时,B处与灯塔P的距离为()A60 n mileB60 n
3、 mileC30 n mileD30 n mile3已知一组数据:12,5,9,5,14,下列说法不正确的是( )A平均数是9B中位数是9C众数是5D极差是54如图,BD为O的直径,点A为弧BDC的中点,ABD35,则DBC()A20B35C15D455小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是()A2B3C4D56一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸
4、出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD7如图,在ABC中,C90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD8上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是() 12345成绩(m)8.28.08.27.57.8A8.2,8.2B8.0,8.2C8.2,7.8D8.2,8.09下列计算正确的是()A(a)aBa+aaC(3a)(2a)6aD3aa310据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力
5、风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A5.3103B5.3104C5.3107D5.3108二、填空题(共7小题,每小题3分,满分21分)11已知关于x的一元二次方程kx2+3x4k+6=0有两个相等的实数根,则该实数根是_12函数y= 中,自变量x的取值范围是 _13今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为_人.14从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是_15如图,PA,PB是O是切线,A,B为切点,AC是O的直径,若P=46,则BAC= 度1
6、6在数轴上与所对应的点相距4个单位长度的点表示的数是_17使有意义的的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率19(5分)反比例函数y=(k0)与一次函数y=mx+b
7、(m0)交于点A(1,2k1)求反比例函数的解析式;若一次函数与x轴交于点B,且AOB的面积为3,求一次函数的解析式20(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和请你用画树状图或列表的方法,求出这两数和为6的概率如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?做出判断,并说明理由21(10分)如图,RtABC,CABC,AC4,在AB边上取一点D,使ADBC,作AD的垂直平分线,交AC
8、边于点F,交以AB为直径的O于G,H,设BCx(1)求证:四边形AGDH为菱形;(2)若EFy,求y关于x的函数关系式;(3)连结OF,CG若AOF为等腰三角形,求O的面积;若BC3,则CG+9_(直接写出答案)22(10分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k0)的图象经过点B求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积23(12分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,AOM的面积为2求反比例函数的解析式;设点B的坐标为(t,
9、0),其中t2若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值24(14分)如图,在ABC,AB=AC,以AB为直径的O分别交AC、BC于点D、E,点F在AC的延长线上,且CBF=CAB(1)求证:直线BF是O的切线;(2)若AB=5,sinCBF=,求BC和BF的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:抛物线的顶点坐标A(1,3),抛物线的对称轴为直线x=-=1,2a+b=0,所以正确;抛物线开口向下,a0,b=-2a0,抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;抛物线的顶点坐标A(1,3),x=1时,二次函数
10、有最大值,方程ax2+bx+c=3有两个相等的实数根,所以正确;抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点为(-2,0),所以错误;抛物线y1=ax2+bx+c与直线y2=mx+n(m0)交于A(1,3),B点(4,0)当1x4时,y2y1,所以正确故选C考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点2、B【解析】如图,作PEAB于E在RtPAE中,PAE=45,PA=60n mile,PE=AE=60=n mile,在RtPBE中,B=30,PB=2PE=n mile故选B3、D【解析】分别计算该组数据的平均数、中位数、众数及极差后即
11、可得到正确的答案平均数为(12+5+9+5+14)5=9,故选项A正确;重新排列为5,5,9,12,14,中位数为9,故选项B正确;5出现了2次,最多,众数是5,故选项C正确;极差为:145=9,故选项D错误故选D4、A【解析】根据ABD35就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得DBC【详解】解:ABD35,的度数都是70,BD为直径,的度数是18070110,点A为弧BDC的中点,的度数也是110,的度数是110+11018040,DBC20,故选:A【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力5、D【解析】设这个数是a,把x=1代入方程
12、得出一个关于a的方程,求出方程的解即可【详解】设这个数是a,把x=1代入得:(-2+1)=1-,1=1-,解得:a=1故选:D【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键6、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.7、C【解析】连
13、接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMNAB,CDABCMNCAB在CMN中,C=90,MC=6,NC=,故选C8、D【解析】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1其中8.1出现1次,出现次数最多,8.2排在第三,这组数据的众数与中位数分别是:8.1,8.2故选D【点睛】本题考查众数;中位数9、A【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解【详解】A(a2)3=a23=a6,故本选项正确;Ba2+a2=2
14、a2,故本选项错误;C(3a)(2a)2=(3a)(4a2)=12a1+2=12a3,故本选项错误;D3aa=2a,故本选项错误故选A【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键10、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数【详解】解:5300万=53000000=.故选C.【点睛】在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:必须满足:;比原来的数的整数位数少1(也可以通过小数点移位来确定).二、填空题(共7小题,每小题3分,满分21分)11、1【解
15、析】根据二次项系数非零结合根的判别式=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解【详解】解:关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,解得:k=,原方程为x1+4x+4=0,即(x+1)1=0,解得:x=-1故答案为:-1【点睛】本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当=0时,方程有两个相等的实数根”是解题的关键12、x【解析】该函数是分式,分式有意义的条件是分母不等于1,故分母x11,解得x的范围【详解】解:根据分式有意义的条件得:2x+31解得:故答案为【点睛】本题考查了
16、函数自变量取值范围的求法要使得本题函数式子有意义,必须满足分母不等于113、3.53104【解析】科学记数法的表示形式为a10n的形式,其中1|a|1时,n是正数;当原数的绝对值1时,n是负数,35300=3.53104,故答案为:3.53104.14、【解析】共有3种等可能的结果,它们是:3,2,3;4, 2, 3;5, 2, 3;其中三条线段能够成三角形的结果为2,所以三条线段能构成三角形的概率= .故答案为.15、1【解析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA
17、与AP垂直,根据垂直的定义得到OAP为直角,再由OAP-PAB即可求出BAC的度数【详解】PA,PB是O是切线,PA=PB.又P=46,PAB=PBA=.又PA是O是切线,AO为半径,OAAP.OAP=90.BAC=OAPPAB=9067=1.故答案为:1【点睛】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键16、2或1【解析】解:当该点在2的右边时,由题意可知:该点所表示的数为2,当该点在2的左边时,由题意可知:该点所表示的数为1故答案为2或1点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想17、【解析】根据二次根式的被开
18、方数为非负数求解即可.【详解】由题意可得:,解得:.所以答案为.【点睛】本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.三、解答题(共7小题,满分69分)18、(1);(2).【解析】【分析】(1)根据题意可求得2个“2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角为3602120120,转动转盘一次,求转出的数字是2的概率为;(2)由(1)可知,
19、该转盘转出“1”、“3”、“2”的概率相同,均为,所有可能性如下表所示:第一次 第二次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比19、(1)y=;(2)y=或y=【解析】试题分析:(1)把A(1,2k-1)代入y=即可求得结果;(2)根据三角形的面积等于3,求得点B的坐标,代入一次函数y=mx+b即可得到结果试题解析:(1)把A(1,2k1)代入y=得,2k1=k,k=1,反
20、比例函数的解析式为:y=;(2)由(1)得k=1,A(1,1),设B(a,0),SAOB=|a|1=3,a=6,B(6,0)或(6,0),把A(1,1),B(6,0)代入y=mx+b得: , ,一次函数的解析式为:y=x+,把A(1,1),B(6,0)代入y=mx+b得:,一次函数的解析式为:y=所以符合条件的一次函数解析式为:y=或y=x+20、 (1)列表见解析;(2)这个游戏规则对双方不公平【解析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性【详解】(1)列表如下:由表可知,
21、总共有9种结果,其中和为6的有3种,则这两数和为6的概率;(2)这个游戏规则对双方不公平理由如下:因为P(和为奇数),P(和为偶数),而,所以这个游戏规则对双方是不公平的【点睛】本题考查了列表法求概率注意树状图与列表法可以不重不漏的表示出所有等可能的情况用到的知识点为:概率=所求情况数与总情况数之比21、(1)证明见解析;(2)yx2(x0);(3)或8或(2+2);4【解析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明AEFACB,可得解决问题;(3)分三种情形分别求解即可解决问题;只要证明CFGHFA,可得=,求出相应的线段即可解决问题;【详解
22、】(1)证明:GH垂直平分线段AD,HAHD,GAGD,AB是直径,ABGH,EGEH,DGDH,AGDGDHAH,四边形AGDH是菱形(2)解:AB是直径,ACB90,AEEF,AEFACB90,EAFCAB,AEFACB,yx2(x0)(3)解:如图1中,连接DFGH垂直平分线段AD,FAFD,当点D与O重合时,AOF是等腰三角形,此时AB2BC,CAB30,AB,O的面积为如图2中,当AFAO时,AB,OA,AF,解得x4(负根已经舍弃),AB,O的面积为8如图21中,当点C与点F重合时,设AEx,则BCAD2x,AB,ACEABC,AC2AEAB,16x,解得x222(负根已经舍弃),
23、AB216+4x28+8,O的面积AB2(2+2)综上所述,满足条件的O的面积为或8或(2+2);如图3中,连接CGAC4,BC3,ACB90,AB5,OHOA,AE,OEOAAE1,EGEH,EFx2,FG,AF,AH,CFGAFH,FCGAHF,CFGHFA,CG,CG+94故答案为4【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题22、(1)y=;(2)1;【解析】(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例
24、函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=; (2)B(3,4),C(m,0),边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=94=1【点睛】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键23、(2)(2)7或2.【解析】试
25、题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值试题解析:(2)AOM的面积为2,|k|=2,而k0,k=6,
26、反比例函数解析式为y=;(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,把x=2代入y=得y=6,M点坐标为(2,6),AB=AM=6,t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,则AB=BC=t-2,C点坐标为(t,t-2),t(t-2)=6,整理为t2-t-6=0,解得t2=2,t2=-2(舍去),t=2,以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2考点:反比例函数综合题24、(1)证明见解析;(2)BC=;. 【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直
27、角三角形,利用直角三角形两锐角相等得到直角,从而证明ABF=90(2)利用已知条件证得AGCABF,利用比例式求得线段的长即可(1)证明:连接AE,AB是O的直径,AEB=90,1+2=90AB=AC,1=CABCBF=CAB,1=CBFCBF+2=90即ABF=90AB是O的直径,直线BF是O的切线(2)解:过点C作CGAB于GsinCBF=,1=CBF,sin1=,在RtAEB中,AEB=90,AB=5,BE=ABsin1=,AB=AC,AEB=90,BC=2BE=2,在RtABE中,由勾股定理得AE=2,sin2=,cos2=,在RtCBG中,可求得GC=4,GB=2,AG=3,GCBF,AGCABF,=BF=