山东省济宁市田家炳中学2022-2023学年中考押题数学预测卷含解析.doc

上传人:lil****205 文档编号:88000416 上传时间:2023-04-19 格式:DOC 页数:18 大小:813KB
返回 下载 相关 举报
山东省济宁市田家炳中学2022-2023学年中考押题数学预测卷含解析.doc_第1页
第1页 / 共18页
山东省济宁市田家炳中学2022-2023学年中考押题数学预测卷含解析.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《山东省济宁市田家炳中学2022-2023学年中考押题数学预测卷含解析.doc》由会员分享,可在线阅读,更多相关《山东省济宁市田家炳中学2022-2023学年中考押题数学预测卷含解析.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回

2、。一、选择题(共10小题,每小题3分,共30分)1如图,在O中,O为圆心,点A,B,C在圆上,若OA=AB,则ACB=()A15B30C45D602已知是二元一次方程组的解,则的算术平方根为( )A2BC2D43如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,BEF=2BAC,FC=2,则AB的长为()A8B8C4D64一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15方向,那么海岛B离此航线的最近距离是()(结果保留小数点后两位)(参考数据

3、:1.732,1.414)A4.64海里 B5.49海里 C6.12海里 D6.21海里5若数a,b在数轴上的位置如图示,则()Aa+b0Bab0Cab0Dab06九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走x步才能追上走路慢的人,那么,下面所列方程正确的是ABCD7一辆慢车和一辆快车

4、沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )快车追上慢车需6小时;慢车比快车早出发2小时;快车速度为46km/h;慢车速度为46km/h; A、B两地相距828km;快车从A地出发到B地用了14小时A2个B3个C4个D5个8如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,第n次碰到正方形的边时的点为Pn,则点P2018的坐标是()A(1,4)B(4,3)C(2,4)D(4,1)9已知反比例函数下列结论正确

5、的是( )A图像经过点(-1,1)B图像在第一、三象限Cy 随着 x 的增大而减小D当 x 1时, y 110如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径ADCE运动,则APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边PAB,使AB落在x轴上,则POB的面积为_12分解因式:x32x2+x=_13如图,在ABC中,AB=AC=2,BAC=120,点D、E都在边BC上,DAE=60若

6、BD=2CE,则DE的长为_.14如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为_(结果保留)15如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,依次下去则点B6的坐标_16据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为_三、解答题(共8题,共72分)17(8分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部

7、处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.18(8分)如图,AB是O的直径,D是O上一点,点E是AC的中点,过点A作O的切线交BD的延长线于点F连接AE并延长交BF于点C(1)求证:AB=BC;(2)如果AB=5,tanFAC=,求FC的长19(8分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相

8、同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由20(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin280.47,cos280.88,tan280.53)21(8分)如图,点D为O上一点,点C在直径BA的延长线上,且CDA=CBD判断直线CD和O的位置关系,并说明理由过点B作O的切线BE交直线CD于点E,若AC=2,O的半径是3,求BE的长22(10分)为实施“农村留守儿童关爱计划”,某校结

9、全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率23(12分)二次函数y=ax2+bx+c(a,b,c为常数,且a1)中的x与y的部分对应值如表x1113y1353下列结论:ac1;当x1时,y的值随x值的增大而减小3是方程ax2+(b1)x+c=1的一个根;当1x3时,ax2+(b1)x+c1其中正确的结论是 2

10、4如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题意得到AOB是等边三角形,求出AOB的度数,根据圆周角定理计算即可【详解】解:OA=AB,OA=OB,AOB是等边三角形,AOB=60,ACB=30,故选B【点睛】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键2、C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根【分析】是二元一次方程组的解,解得即的算术平方

11、根为1故选C3、D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BOEF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得BAC=ABO,再根据三角形的内角和定理列式求出ABO=30,即BAC=30,根据直角三角形30角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,BE=BF,OE=OF,BOEF,在RtBEO中,BEF+ABO=90,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,BAC=ABO,又BEF=2BAC,即2BAC+BAC=90,解得BAC=30,FCA=30,FBC=30,FC=2,BC=2,

12、AC=2BC=4,AB=6,故选D点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出BAC=30是解题的关键.4、B【解析】根据题意画出图如图所示:作BDAC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,RtABD中,根据勾股定理得AD=DE=x,AB=BE=CE=2x,由AC=AD+DE+EC=2x+2x=30,解之即可得出答案.【详解】根据题意画出图如图所示:作BDAC,取BE=CE,AC=30,CAB=30ACB=15,ABC=13

13、5,又BE=CE,ACB=EBC=15,ABE=120,又CAB=30BA=BE,AD=DE,设BD=x,在RtABD中,AD=DE=x,AB=BE=CE=2x,AC=AD+DE+EC=2x+2x=30,x=5.49,故答案选:B.【点睛】本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.5、D【解析】首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案【详解】由数轴可知:a0b,a-1,0b1,所以,A.a+b0,故原选项错误;B. ab0,故原选项错误;C.a-b0,故原选项错误;D.,正确.故选D【点睛】本题

14、考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系6、B【解析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:故选B点睛:本题考查了一元一次方程的应用找准等量关系,列方程是关键7、B【解析】根据图形给出的信息求出两车的出发时间,速度等即可解答【详解】解:两车在276km处相遇,此时快车行驶了4个小时,故错误慢车0时出发,快车2时出发,故正确快车4个小时走了276km,可求出速度为69km/h,错误慢车6个小时走了276km,可求出速度为46km/h,正确慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确快车2时出发,14

15、时到达,用了12小时,错误故答案选B【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键8、D【解析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、等,故该坐标的循环周期为7则有则有,故是第2018次碰到正方形的点的坐标为(4,1).【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.9、B【解析】分析:直接利用反比例函数的性质进而分析得出答案详解:A反比例函数y=,图象经过点(1,1),故此选项错误; B反比例函数y=,图象在第一、三象限,故此选项正确; C反比例函数y=,每个象限内,y随着x的增大而减小,

16、故此选项错误; D反比例函数y=,当x1时,0y1,故此选项错误 故选B点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键10、B【解析】由题意可知,当时,;当时,;当时,.时,;时,.结合函数解析式,可知选项B正确.【点睛】考点:1动点问题的函数图象;2三角形的面积二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】如图,过点P作PHOB于点H,点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,9=m2,且m0,解得,m=3.PH=OH=3.PAB是等边三角形,PAH=60.根据锐角三角函数,得AH=.OB=3+SPOB=OBPH=.12、x

17、(x-1)2.【解析】由题意得,x32x2+x= x(x1)213、1-1【解析】将ABD绕点A逆时针旋转120得到ACF,取CF的中点G,连接EF、EG,由AB=AC=2、BAC=120,可得出ACB=B=10,根据旋转的性质可得出ECG=60,结合CF=BD=2CE可得出CEG为等边三角形,进而得出CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解【详解】将ABD绕点A逆时针旋转120得到ACF,取CF的中点G,连接

18、EF、EG,如图所示AB=AC=2,BAC=120,ACB=B=ACF=10,ECG=60CF=BD=2CE,CG=CE,CEG为等边三角形,EG=CG=FG,EFG=FEG=CGE=10,CEF为直角三角形BAC=120,DAE=60,BAD+CAE=60,FAE=FAC+CAE=BAD+CAE=60在ADE和AFE中,ADEAFE(SAS),DE=FE设EC=x,则BD=CF=2x,DE=FE=6-1x,在RtCEF中,CEF=90,CF=2x,EC=x,EF=x,6-1x=x,x=1-,DE=x=1-1故答案为:1-1【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过

19、勾股定理找出方程是解题的关键14、cm1【解析】求出AD,先分别求出两个扇形的面积,再求出答案即可【详解】解:AB长为15cm,贴纸部分的宽BD为15cm,AD=10cm,贴纸的面积为S=S扇形ABCS扇形ADE=(cm1),故答案为cm1【点睛】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键15、 (-1,0)【解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为,B2所在的正方形的对角线长为()2,B3所在的正方形的对角线长为()3;B4所在的正方形的对角线长为()4;B5所在的正方形的对角线长为()5;可推出B6所在的正方形的对角线长为()6=1又因为B6在x轴负半

20、轴,所以B6(-1,0)解:如图所示正方形OBB1C,OB1=,B1所在的象限为第一象限;OB2=()2,B2在x轴正半轴;OB3=()3,B3所在的象限为第四象限;OB4=()4,B4在y轴负半轴;OB5=()5,B5所在的象限为第三象限;OB6=()6=1,B6在x轴负半轴B6(-1,0)故答案为(-1,0)16、3.86108【解析】根据科学记数法的表示(a10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数)形式可得:3.86亿=386000000=3.8610

21、8.故答案是:3.86108.三、解答题(共8题,共72分)17、甲建筑物的高度约为,乙建筑物的高度约为.【解析】分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案详解:如图,过点作,垂足为.则.由题意可知,.可得四边形为矩形.,.在中,.在中,. .答:甲建筑物的高度约为,乙建筑物的高度约为.点睛:本题考查解直角三角形的应用-仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般18、 (1)见解析;(2).【解析】分析:(1)由AB是直径可得BEAC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;

22、(2)由FAC+CAB=90,CAB+ABE=90,可得FAC=ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CHAF于H,可证RtACHRtBAC,列比例式求出HC、AH的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.AB是O的直径,AEB=90,BEAC,而点E为AC的中点,BE垂直平分AC,BA=BC;(2)解:AF为切线,AFAB,FAC+CAB=90,CAB+ABE=90,FAC=ABE,tanABE=FAC=,在RtABE中,tanABE=,设AE=x,则BE=2x,AB=x,即x=5,解得x=,AC

23、=2AE=2,BE=2作CHAF于H,如图,HAC=ABE,RtACHRtBAC,=,即=,HC=2,AH=4,HCAB,=,即=,解得FH=在RtFHC中,FC=点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到RtACHRtBAC是解(2)的关键.19、(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即

24、可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x1时,y1=3000+3000(x1)(130%)=2100x+1;y2=3000x(125%)=2250x,y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=21005+1=11400,y2=2250x=22505=11250,1140011250,所买商品为5件时,应选择乙商场更优惠考点:一次函数的应用20、操作平台C离地面

25、的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90,再计算出CAF=28,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90,CAF=CAH-HAF=118-90=28,在RtACF中,sinCAF=,CF=9sin28=90.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,

26、构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算21、解:(1)直线CD和O的位置关系是相切,理由见解析(2)BE=1【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得DAB+DBA=90,再由CDA=CBD可得CDA+ADO=90,从而得CDO=90,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可试题解析:(1)直线CD和O的位置关系是相切,理由是:连接OD,AB是O的直径,ADB=90,DAB+DBA=90,CDA=CBD,DAB+CDA=90,OD=O

27、A,DAB=ADO,CDA+ADO=90,即ODCE,直线CD是O的切线,即直线CD和O的位置关系是相切;(2)AC=2,O的半径是3,OC=2+3=5,OD=3,在RtCDO中,由勾股定理得:CD=4,CE切O于D,EB切O于B,DE=EB,CBE=90,设DE=EB=x,在RtCBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理22、解:(1)该校班级个数为420%=20(个),只有2名留守儿童的班级个数为:20(2+3+4+5+4)=2(个),该校平均每班留守儿

28、童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.23、【解析】试题分析:x=1时y=1,x=1时,y=3,x=1时,y=5,解得,y=x2+3x+3,ac=13=31,故正确;对称轴为直线,

29、所以,当x时,y的值随x值的增大而减小,故错误;方程为x2+2x+3=1,整理得,x22x3=1,解得x1=1,x2=3,所以,3是方程ax2+(b1)x+c=1的一个根,正确,故正确;1x3时,ax2+(b1)x+c1正确,故正确;综上所述,结论正确的是故答案为【考点】二次函数的性质24、O的半径为【解析】如图,连接OA交BC于H首先证明OABC,在RtACH中,求出AH,设O的半径为r,在RtBOH中,根据BH2+OH2OB2,构建方程即可解决问题。【详解】解:如图,连接OA交BC于H点A为的中点,OABD,BHDH4,AHCBHO90,AC9,AH3,设O的半径为r,在RtBOH中,BH2+OH2OB2,42+(r3)2r2,r,O的半径为【点睛】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁