宜丰中学2022-2023学年高三六校第一次联考数学试卷含解析.doc

上传人:lil****205 文档编号:88000393 上传时间:2023-04-19 格式:DOC 页数:20 大小:2.06MB
返回 下载 相关 举报
宜丰中学2022-2023学年高三六校第一次联考数学试卷含解析.doc_第1页
第1页 / 共20页
宜丰中学2022-2023学年高三六校第一次联考数学试卷含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《宜丰中学2022-2023学年高三六校第一次联考数学试卷含解析.doc》由会员分享,可在线阅读,更多相关《宜丰中学2022-2023学年高三六校第一次联考数学试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1在中,“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2如图是二次函数的部分图象,则函数

2、的零点所在的区间是( )ABCD3设全集,集合,则( )ABCD4设函数恰有两个极值点,则实数的取值范围是( )ABCD5已知函数,则不等式的解集为( )ABCD6在三角形中,求( )ABCD7已知m,n为异面直线,m平面,n平面,直线l满足l m,l n,则( )A且B且C与相交,且交线垂直于D与相交,且交线平行于8第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同

3、一组的概率是( )ABCD9若,满足约束条件,则的取值范围为( )ABCD10已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D11棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为( )ABCD112已知等差数列的前n项和为,且,若(,且),则i的取值集合是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图是一个算法的伪代码,运行后输出的值为_14已知随机变量,且,则_15如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,则的值是_.16已知实数满足,则的最小值是_

4、.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.18(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,求证:(1)平面;(2)平面平面19(12分)如图,在三棱锥中,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.20(12分)随着现代社会的发展,我国对于环

5、境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为

6、300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.21(12分)如图,平面四边形中,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.22(10分)已知离心率为的椭圆经过点.(1)求椭圆的方程;(2)荐椭圆的右焦点为,过点的直线与椭圆分别交于,若直线、的斜率成等差数列,请问的面积是否为定值?若是,求出此定值;若不是,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共6

7、0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】通过列举法可求解,如两角分别为时【详解】当时,但,故充分条件推不出;当时,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题2、B【解析】根据二次函数图象的对称轴得出范围,轴截距,求出的范围,判断在区间端点函数值正负,即可求出结论.【详解】,结合函数的图象可知,二次函数的对称轴为,所以在上单调递增.又因为,所以函数的零点所在的区间是.故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.3、D【解析】求解不等

8、式,得到集合A,B,利用交集、补集运算即得解【详解】由于 故集合或 故集合 故选:D【点睛】本题考查了集合的交集和补集混合运算,考查了学生概念理解,数学运算的能力,属于中档题.4、C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选:C【点睛】本题考查利用导数研究函数的单

9、调性与极值,函数与方程的应用,属于中档题.5、D【解析】先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.6、A【解析】利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,.由正弦定理得.故选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考

10、查计算能力,属于中等题.7、D【解析】试题分析:由平面,直线满足,且,所以,又平面,所以,由直线为异面直线,且平面平面,则与相交,否则,若则推出,与异面矛盾,所以相交,且交线平行于,故选D考点:平面与平面的位置关系,平面的基本性质及其推论8、A【解析】根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.9、

11、B【解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.10、D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.11、C【解析】连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,推导出OHRQ,且OHRQ,由此能求出该直线被球

12、面截在球内的线段的长【详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,OHRQ,且OHRQ,MH,MN故选:C【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12、C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,解得,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、13【解析】根据题

13、意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.14、0.1【解析】根据原则,可得,简单计算,可得结果.【详解】由题可知:随机变量,则期望为所以故答案为:【点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.15、【解析】根据圆柱的体积为,以及圆锥的体积公式,计算即得.【详解】由题得,得.故答案为:【点睛】本题主要考查圆锥体的体积,是基础题.16、【解析】先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-

14、3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在;详见解析【解析】(1)设,通过,即为的中点,转化求解,点的轨迹的方程(2)设直线的方程为,先根据,可得,再根据韦达定理,点在椭圆上可得,将代入可得,该方程无解,问题得以解决【详解】(1)设,则,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意

15、知直线的斜率存在且不为零,设直线的方程为,因为,故,即,联立,消去得:,设,因为四边形为平行四边形,故,点在椭圆上,故,整理得,将代入,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题18、(1)详见解析;(2)详见解析.【解析】(1) 连结根据中位线的性质证明即可.(2) 证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,平面平面,平面平面【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.19、(1)见解析;(2).

16、【解析】(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、, 因为,所以.又,所以,又由已知,则,所以,.又为正三角形,且,所以,因为,所以,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点

17、睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.20、(1);(2)不会超过预算,理由见解析【解析】(1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率;(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论.【详解】(1)某个时间段在开启3套系统就被确定需要检查污染源

18、处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为某个时间段需要检查污染源处理系统的概率为.(2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.,令,则当时,在上单调递增;当时,在上单调递减,的最大值为,实施此方案,最高费用为(万元),故不会超过预算.【点睛】本题考查独立重复事件发生的概率、期望,及运用求导函数研究期望的最值,由根据期望值确定方案,此类题目解决的关键在于将生活中的量转化为数学中和量,属于中档题.21、(1)见解析;(2)【解析】(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于

19、是的中点,所以,从而可证得结论;(2)由于在中,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为. 解法二:在中,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连

20、,则由平面平面,所以,又,则平面,又平面所以,在中,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.22、 (1);(2)是,【解析】(1)根据及可得,再将点代入椭圆的方程与联立解出,即可求出椭圆的方程; (2) 可设所在直线的方程为,将直线的方程与椭圆的方程联立,用根与系数的关系求出,然后将直线、的斜率、分别用表示,利用可求出,从而可确定点恒在一条直线上,结合图形即可求出的面积【详解】(1)因为椭圆的离心率为,所以,即,又,所以,因为点在椭圆上,所以,由解得,所以椭圆C的方程为(1)可知,可设所在直线的方程为,由,得,设,则,设直线、的斜率分别为、,因为三点共线,所以,即,所以,又,因为直线、的斜率成等差数列,所以,即,化简得,即点恒在一条直线上,又因为直线方程为,且,所以是定值.【点睛】本题主要考查椭圆的方程,直线与椭圆的位置关系及椭圆中的定值问题,属于中档题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁