《山东省德州市经开区2022-2023学年中考数学全真模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省德州市经开区2022-2023学年中考数学全真模拟试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1如图,已知AB是O的直径,弦CDAB于E,连接BC、BD、AC,下列结论中不一定正确的是()AACB=90BOE=BECBD=BCD2计算(x2)(x+5)的结果是Ax2+3x+7Bx2+3x+10Cx2+3x10Dx23x103已知x
2、+=3,则x2+=()A7B9C11D84下列因式分解正确的是ABCD5在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A9人B10人C11人D12人6如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A3个;B4个;C5个;D6个7已知点A(0,4),B(8,0)和C(a,a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()ABCD28如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB2,AE,则点G 到BE的距离是( )ABCD9定义:如果一元二次方程
3、ax2+bx+c=0(a0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a0)满足ab+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A方有两个相等的实数根B方程有一根等于0C方程两根之和等于0D方程两根之积等于010如图,在ABCD中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,若AB6,EF2,则BC的长为()A8B10C12D14二、填空题(本大题共6个小题,每小题3分,共18分)11已知:如图,AD、BE分别是ABC的中线和角平分线,ADBE,ADBE6
4、,则AC的长等于_12如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.13设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)14若一次函数y=2(x+1)+4的值是正数,则x的取值范围是_15若一个反比例函数的图象经过点A(m,m)和B(2m,1),则这个反比例函数的表达式为_16从正n边形 一个顶点引出的对角线将它分成了8个三角形,则它的每个内角的度数是_ .三、解答题(
5、共8题,共72分)17(8分)解不等式组: ,并写出它的所有整数解18(8分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点E(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由19(8分)先化简(x-),然后从-x的范围内选取一个合适的正整数作为x
6、的值代入求值.20(8分)如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,和的顶点都在格点上,回答下列问题:可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:_;画出绕点B逆时针旋转的图形;在中,点C所形成的路径的长度为_21(8分)在ABC中,以边AB上一点O为圆心,OA为半径的圈与BC相切于点D,分别交AB,AC于点E,F如图,连接AD,若,求B的大小;如图,若点F为的中点,的半径为2,求AB的长 22(10分)如图,内接于,的延长线交于点.(1)求证:平分;(2)若,求和的长.23(12分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校
7、随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.24如图,AB是O的直径,C是弧AB的中点,弦CD与AB相交于E若AOD45,求证:CEED;(2)若AEEO,求tanAOD的值参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据垂径定理及圆周角定理进行解答即可【详解】AB是O的直径,ACB=90
8、,故A正确;点E不一定是OB的中点,OE与BE的关系不能确定,故B错误;ABCD,AB是O的直径,BD=BC,故C正确;,故D正确故选B【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键2、C【解析】根据多项式乘以多项式的法则进行计算即可.【详解】 故选:C.【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键.3、A【解析】根据完全平方公式即可求出答案【详解】(x+)2=x2+2+9=2+x2+,x2+=7,故选A【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.4、D【解析】直接利用提取公因式法以及公式法分解因
9、式,进而判断即可【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确故选:D【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键5、C【解析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.6、B【解析】分析:直接利用
10、轴对称图形的性质进而分析得出答案详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个 故选B 点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键7、B【解析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可【详解】AB的中点D的坐标是(4,-2),C(a,-a)在一次函数y=-x上,设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1根据题意得:
11、,解得:,则交点的坐标是(3,-3)则这个圆的半径的最小值是:=故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键8、A【解析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得BEG与AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离【详解】连接GB、GE,由已知可知BAE=45又GE为正方形AEFG的对角线,AEG=45ABGEAE=4,AB与GE间的距离相等,GE=8,SBEGSAEGSAEFG1过点B作BHAE于点H,A
12、B=2,BHAHHE3BE2设点G到BE的距离为hSBEGBEh2h1h即点G到BE的距离为故选A【点睛】本题主要考查了几何变换综合题涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强解题的关键是运用等积式及四点共圆的判定及性质求解9、C【解析】试题分析:根据已知得出方程ax2+bx+c=0(a0)有两个根x=1和x=1,再判断即可解:把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=1代入方程ax2+bx+c=0得出ab+c=0,方程ax2+bx+c=0(a0)有两个根x=1和x=1,1+(1)=0,即只有选项C正确;选项A、B、D都错误;故选C10、
13、B【解析】试题分析:根据平行四边形的性质可知AB=CD,ADBC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:如图,过点C作CFAD交AD的延长线于点F,可得BECF,易证BGDCFD,所以GD=DF,BG=CF;又因BE是ABC的角平分线且ADBE,BG是公共边,可证得ABGDBG,
14、所以AG=GD=3;由BECF可得AGEAFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在RtAFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=.考点:全等三角形的判定及性质;相似三角形的判定及性质;勾股定理.12、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45,OA=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题
15、的关键是注意掌握数形结合思想的应用13、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为14、x1【解析】根据一次函数的性质得出不等式解答即可【详解】因为一次函数y=2(x+1)+4的值是正数,可得:2(x+1)+40,解得:x1,故答案为x1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.15、 【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m
16、的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.16、144【解析】根据多边形内角和公式计算即可.【详解】解:由题知,这是一个10边形,根据多边形内角和公式:每个内角等于.故答案为:144.【点睛】此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.三、解答题
17、(共8题,共72分)17、2,1,0,1,2;【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可【详解】解:解不等式(1),得解不等式(2),得x2 所以不等式组的解集:3x2 它的整数解为:2,1,0,1,218、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【解析】利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出D
18、E的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论【详解】当时,有,解得:,点A的坐标为当时,点B的坐标为,解得:,抛物线的解析式为点A的坐标为,点B的坐标为,直线AB的解析式为点D的横坐标为x,则点D的
19、坐标为,点E的坐标为,如图点F的坐标为,点A的坐标为,点B的坐标为,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为,若要和相似,只需或如图设点D的坐标为,则点E的坐标为,当时,为等腰直角三角形,即,解得:舍去,点D的坐标为;当时,点E的纵坐标为4,解得:,舍去,点D的坐标为综上所述:存在点D,使得和相似,此时点D的坐标为或故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为(3)存在点D,使得和相似,此时点D的坐标为或【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、
20、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标19、当x=1时,原式=; 当x=1时,原式=【解析】先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算【详解】原式= = =-x,且x为整数,若使分式有意义,x只能取-1和1当x=1时,原式=或:当x=-1时,原式=120、(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;
21、(2)见解析;(3)【解析】(1)ABC先沿y轴翻折,再向右平移1个单位,向下平移3个单位;或先向左平移1个单位,向下平移3个单位,再沿y轴翻折,即可得到DEF;按照旋转中心、旋转角度以及旋转方向,即可得到ABC绕点B逆时针旋转 的图形 ;依据点C所形成的路径为扇形的弧,利用弧长计算公式进行计算即可【详解】解:(1)答案不唯一例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折(2)分别将点C、A绕点B逆时针旋转得到点 、 ,如图所示,即为所求;(3)点C所形成的路径的长为:故答案为(1)先沿y轴翻折,再向右平移1个单位,向下平移3个单位
22、;先向左平移1个单位,向下平移3个单位,再沿y轴翻折;(2)见解析;(3)【点睛】本题考查坐标与图形变化旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小21、 (1)B=40;(2)AB= 6.【解析】(1)连接OD,由在ABC中, C=90,BC是切线,易得ACOD,即可求得CAD=ADO,继而求得答案;(2)首先连接OF,OD,由ACOD得OFA=FOD,由点F为弧AD的中点,易得AOF是等边三角形,继而求得答案.【详解】解:(1)如解图,连接OD,BC切O于点D,ODB=90,C=90,ACOD,C
23、AD=ADO,OA=OD,DAO=ADO=CAD=25,DOB=CAO=CADDAO=50,ODB=90,B=90DOB=9050=40;(2)如解图,连接OF,OD,ACOD,OFA=FOD,点F为弧AD的中点,AOF=FOD,OFA=AOF,AF=OA,OA=OF,AOF为等边三角形,FAO=60,则DOB=60,B=30,在RtODB中,OD=2,OB=4,AB=AOOB=24=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明AOF为等边三角形是解(2)的关键.
24、22、 (1)证明见解析;(2)AC , CD ,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AOBC,再由等腰三角形的性质即可得出结论;(2)延长CD交O于E,连接BE,则CE是O的直径,由圆周角定理得出EBC=90,E=BAC,得出sinE=sinBAC,求出CE=BC=10,由勾股定理求出BE=8,证出BEOA,得出,求出OD=,得出CD=,而BEOA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在RtACH中,由勾股定理求出AC的长即可本题解析:解:(1)证明:延长AO交BC于H,连接BO.ABAC,OBOC,A,O在线段BC的垂
25、直平分线上AOBC.又ABAC,AO平分BAC.(2)延长CD交O于E,连接BE,则CE是O的直径EBC90,BCBE.EBAC,sinEsinBAC.CEBC10.BE8,OAOECE5.AHBC,BEOA.,即,解得OD.CD5.BEOA,即BEOH,OCOE,OH是CEB的中位线OHBE4,CHBC3.AH549.在RtACH中,AC3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出EBC=90,E=BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度23、(1)100;(2)见解
26、析;(3)108;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360,即可得出答案;(4)根据样本估计总体,可得答案试题解析:(1)这四个班参与大赛的学生数是:3030%=100(人);故答案为100;(2)丁所占的百分比是:100%=35%,丙所占的百分比是:130%20%35%=15%,则丙班得人数是:10015%=1
27、5(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%360=108;(4)根据题意得:2000=1250(人)答:全校的学生中参与这次活动的大约有1250人考点:条形统计图;扇形统计图;样本估计总体.24、(1)见解析;(2)tanAOD.【解析】(1)作DFAB于F,连接OC,则ODF是等腰直角三角形,得出OC=OD=DF,由垂径定理得出COE=90,证明DEFCEO得出,即可得出结论;(2)由题意得OE=OA=OC,同(1)得DEFCEO,得出,设O的半径为2a(a0),则OD=2a,EO=a,设EF=x,则DF=2x,在RtODF中,由勾股定理求出x=a,得出DF=a,OF=E
28、F+EO=a,由三角函数定义即可得出结果【详解】(1)证明:作DFAB于F,连接OC,如图所示:则DFE90,AOD45,ODF是等腰直角三角形,OCODDF,C是弧AB的中点,OCAB,COE90,DEFCEO,DEFCEO,CEED;(2)如图所示:AEEO,OE=OA=OC,同(1)得:,DEFCEO,设O的半径为2a(a0),则OD2a,EOa,设EFx,则DF2x,在RtODF中,由勾股定理得:(2x)2+(x+a)2(2a)2,解得:xa,或xa(舍去),DFa,OFEF+EOa,【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键