《安徽省六安市皋城中学2022-2023学年中考数学全真模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽省六安市皋城中学2022-2023学年中考数学全真模拟试卷含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )A9B10C9或10D8或102
2、下列各数中比1小的数是()A2B1C0D13如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S9的值为( )A()6B()7C()6D()74的相反数是()A8B8CD5如图,四边形ABCD中,ACBC,ADBC,BC3,AC4,AD1M是BD的中点,则CM的长为()AB2CD36如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P
3、点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是( )ABCD7在中,则的值是( )ABCD8如图,ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为( )A2.3B2.4C2.5D2.69如图所示的几何体的主视图正确的是( )ABCD10如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 ABCD的位置,旋转角为(090)若1112,则的大小是( )A68B20C28D2211如图,直线a,b被直线c所截,若ab,1=50,3=120,则2的度数为()A80B70C60D5012如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为
4、()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知O的半径为5,由直径AB的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_14如图,AB是O的直径,弦CD交AB于点P,AP2,BP6,APC30,则CD的长为_15当关于x的一元二次方程ax2+bx+c0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”如果关于x的一元二次方程x2+(m2)x2m0是“倍根方程”,那么m的值为_16某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是_.17小明用一
5、个半径为30cm且圆心角为240的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_cm18若向北走5km记作5km,则+10km的含义是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)问题背景:如图1,等腰ABC中,ABAC,BAC120,作ADBC于点D,则D为BC的中点,BADBAC60,于是迁移应用:如图2,ABC和ADE都是等腰三角形,BACDAE120,D,E,C三点在同一条直线上,连接BD(1)求证:ADBAEC;(2)若AD2,BD3,请计算线段CD的长;拓展延伸:如图3,在菱形ABCD中,ABC120
6、,在ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF(3)证明:CEF是等边三角形;(4)若AE4,CE1,求BF的长20(6分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45,接着在建筑物顶端C处测得塔顶端A的仰角为37.5已知ABBD,CDBD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5
7、0.61,cos37.50.79,tan37.50.77)21(6分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图和图,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为 ,图中的m的值为 ;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数22(8分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计现
8、从该校随机抽取名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项)并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图由图中提供的信息,解答下列问题:求n的值;若该校学生共有1200人,试估计该校喜爱看电视的学生人数;若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率23(8分)如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0)抛物线经过A、C两点,与AB边交于点D(1)求抛物线的函数表达式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,A
9、Q=CP,连接PQ,设CP=m,CPQ的面积为S求S关于m的函数表达式,并求出m为何值时,S取得最大值;当S最大时,在抛物线的对称轴l上若存在点F,使FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由24(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条超市约定:随机发放,早餐一人一份,一份两样,一样一个按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率25(10分)已知:如图,在半径为2的扇形中,点C在半
10、径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长26(12分)计算:27(12分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有 人,图表中的 , .统计图中,类所对应的扇形的圆心角的度数是 度.
11、揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意所以n只能为1故选B2
12、、A【解析】根据两个负数比较大小,绝对值大的负数反而小,可得答案【详解】解:A、21,故A正确;B、11,故B错误;C、01,故C错误;D、11,故D错误;故选:A【点睛】本题考查了有理数大小比较,利用了正数大于0,0大于负数,注意两个负数比较大小,绝对值大的负数反而小3、A【解析】试题分析:如图所示正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2=CD2,DE=CE,S2+S2=S1观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,由此可得Sn=()n2当n=9时,S9=()92=()6,故选A考点:勾股定理4、C【解析】互为相反数的两个数是指只有符
13、号不同的两个数,所以的相反数是,故选C5、C【解析】延长BC 到E 使BEAD,利用中点的性质得到CM DEAB,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BEAD,BC/AD,四边形ACED是平行四边形,DE=AB,BC3,AD1,C是BE的中点,M是BD的中点,CM DEAB,ACBC,AB,CM ,故选:C【点睛】此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.6、C【解析】试题分析:由题意可得BQ=x0x1时,P点在BC边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=
14、;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象7、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比8、B【解析】试题分析:在ABC中,AB=5,BC=3,AC=4,AC2+BC2=32+42=52=AB2,C=90,如图:设切点为D,连接CD,AB是C的切线,CDAB,SABC=ACBC=ABCD,ACBC=ABCD,即
15、CD=,C的半径为,故选B考点:圆的切线的性质;勾股定理9、D【解析】主视图是从前向后看,即可得图像.【详解】主视图是一个矩形和一个三角形构成.故选D.10、D【解析】试题解析:四边形ABCD为矩形,BAD=ABC=ADC=90,矩形ABCD绕点A顺时针旋转到矩形ABCD的位置,旋转角为,BAB=,BAD=BAD=90,D=D=90,2=1=112,而ABD=D=90,3=180-2=68,BAB=90-68=22,即=22故选D11、B【解析】直接利用平行线的性质得出4的度数,再利用对顶角的性质得出答案【详解】解:ab,1=50,4=50,3=120,2+4=120,2=120-50=70故
16、选B【点睛】此题主要考查了平行线的性质,正确得出4的度数是解题关键12、C【解析】看到的棱用实线体现.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分)13、x2+x+20(0x10) 不存在 【解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0x10),再根据二次函数的性质,可求函数的最大值【详解】如图所示,连接PB,PBM=BAP,BMP=APB=90,PMBPAB,PM:PB=PB:AB,(0x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0x10),不存在
17、【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.14、 【解析】如图,作OHCD于H,连结OC,根据垂径定理得HC=HD,由题意得OA=4,即OP=2,在RtOPH中,根据含30的直角三角形的性质计算出OH=OP=1,然后在在RtOHC中,利用勾股定理计算得到CH=,即CD=2CH=2【详解】解:如图,作OHCD于H,连结OC,OHCD,HC=HD,AP=2,BP=6,AB=8,OA=4,OP=OAAP=2,在RtOPH中,OPH=30,POH=60,OH=OP=1,在RtOHC中,OC=4,OH=1,CH=,CD=2CH=2故答案为2.【点睛】本题主要考查了
18、圆的垂径定理,勾股定理和含30角的直角三角形的性质,解此题的关键在于作辅助线得到直角三角形,再合理利用各知识点进行计算即可15、-1或-4【解析】分析: 设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.详解:由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:,化简整理得:,解得 .故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.16、【解析】设降价的百分率为x,则第一次降价后的单价是原来的(1x),第二次降价后的单价是原来的(1x)2,根
19、据题意列方程解答即可【详解】解:设降价的百分率为x,根据题意列方程得:100(1x)281解得x10.1,x21.9(不符合题意,舍去)所以降价的百分率为0.1,即10%故答案为:10%.【点睛】本题考查了一元二次方程的应用找到关键描述语,根据等量关系准确的列出方程是解决问题的关键还要判断所求的解是否符合题意,舍去不合题意的解17、20【解析】先求出半径为30cm且圆心角为240的扇形纸片的弧长,再利用底面周长=展开图的弧长可得【详解】=40设这个圆锥形纸帽的底面半径为r根据题意,得40=2r,解得r=20cm故答案是:20.【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然
20、后由扇形的弧长公式和圆的周长公式求值18、向南走10km【解析】分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.详解: 向北走5km记作5km, +10km表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)见解析;(2)CD =;(3)见解析;(4)【解析】试题分析:迁移应用:(1)如图2中,只要证明DAB=CAE,即可根据SAS解决问题;(2)结论:CD=AD+BD由D
21、ABEAC,可知BD=CE,在RtADH中,DH=ADcos30= AD,由AD=AE,AHDE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:(3)如图3中,作BHAE于H,连接BE由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出ADC=AEC=120,推出FEC=60,推出EFC是等边三角形;(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在RtBHF中,由BFH=30,可得=cos30,由此即可解决问题试题解析:迁移应用:(1)证明:如图2,BAC=DAE=120,DAB=CAE,在DAE和EAC中,DA=EA
22、,DAB=EAC,AB=AC,DABEAC,(2)结论:CD=AD+BD理由:如图2-1中,作AHCD于HDABEAC,BD=CE,在RtADH中,DH=ADcos30=AD,AD=AE,AHDE,DH=HE,CD=DE+EC=2DH+BD=AD+BD=拓展延伸:(3)如图3中,作BHAE于H,连接BE四边形ABCD是菱形,ABC=120,ABD,BDC是等边三角形,BA=BD=BC,E、C关于BM对称,BC=BE=BD=BA,FE=FC,A、D、E、C四点共圆,ADC=AEC=120,FEC=60,EFC是等边三角形,(4)AE=4,EC=EF=1,AH=HE=2,FH=3,在RtBHF中,
23、BFH=30, =cos30,BF=20、43米【解析】作CEAB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x根据tanACE=,列出方程即可解决问题【详解】解:如图,作CEAB于E则四边形BDCE是矩形,BE=CD=9.982米,设AB=x在RtABD中,ADB=45,AB=BD=x,在RtAEC中,tanACE=tan37.50.77,=0.77,解得x43,答:“小雁塔”的高AB的长度约为43米【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题21、(I)150、
24、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得【详解】解:(I)本次随机抽样调查的学生人数为1812%=150人,m=100(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,平均数为=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500(18%+10%)=
25、700人【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键22、(1)50;(2)240;(3).【解析】用喜爱社会实践的人数除以它所占的百分比得到n的值;先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比,即可估计该校喜爱看电视的学生人数;画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.【详解】解:(1);(2)样本中喜爱看电视的人数为(人,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率
26、【点睛】本题考查了列表法与树状图法;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率,也考查了统计图.23、(1);(2),当m=5时,S取最大值;满足条件的点F共有四个,坐标分别为,【解析】(1)将A、C两点坐标代入抛物线y=-x2+bx+c,即可求得抛物线的解析式;(2)先用m表示出QE的长度,进而求出三角形的面积S关于m的函数;直接写出满足条件的F点的坐标即可,注意不要漏写【详解】解:(1)将A、C两点坐标代入抛物线,得 ,解得: ,抛物线的解析式为y=x2+x+8;(2)OA=8,OC=6,AC= =10,过点Q
27、作QEBC与E点,则sinACB = = =, =,QE=(10m),S=CPQE=m(10m)=m2+3m;S=CPQE=m(10m)=m2+3m=(m5)2+,当m=5时,S取最大值;在抛物线对称轴l上存在点F,使FDQ为直角三角形,抛物线的解析式为y=x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当FDQ=90时,F1(,8),当FQD=90时,则F2(,4),当DFQ=90时,设F(,n),则FD2+FQ2=DQ2,即+(8n)2+(n4)2=16,解得:n=6 ,F3(,6+),F4(,6),满足条件的点F共有四个,坐标分别为F1(,8),F2(,4),F3(,6+
28、),F4(,6)【点睛】本题考查二次函数的综合应用能力,其中涉及到的知识点有抛物线的解析式的求法抛物线的最值等知识点,是各地中考的热点和难点,解题时注意数形结合数学思想的运用,同学们要加强训练,属于中档题24、(1)不可能;(2).【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油
29、条的概率=【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率25、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或【解析】(2)先求出OCOB=2,设OD=x,得出CD=AD=OAOD=2x,根据勾股定理得:(2x)2x2=2求出x,即可得出结论;(2)先判断出,进而得出CBE=BCE,再判断出OBEEBC,即可得出结论;(3)分两种情况:当CD=CE时,判断出四边形ADCE是菱形,得出OCE=90在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC
30、2=CD2OD2=a2(2a)2,建立方程求解即可;当CD=DE时,判断出DAE=DEA,再判断出OAE=OEA,进而得出DEA=OEA,即:点D和点O重合,即可得出结论【详解】(2)C是半径OB中点,OCOB=2DE是AC的垂直平分线,AD=CD设OD=x,CD=AD=OAOD=2x在RtOCD中,根据勾股定理得:(2x)2x2=2,x,CD,sinOCD;(2)如图2,连接AE,CEDE是AC垂直平分线,AE=CEE是弧AB的中点,AE=BE,BE=CE,CBE=BCE连接OE,OE=OB,OBE=OEB,CBE=BCE=OEBB=B,OBEEBC,BE2=BOBC;(3)DCE是以CD为
31、腰的等腰三角形,分两种情况讨论:当CD=CE时DE是AC的垂直平分线,AD=CD,AE=CE,AD=CD=CE=AE,四边形ADCE是菱形,CEAD,OCE=90,设菱形的边长为a,OD=OAAD=2a在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,4a2=a2(2a)2,a=22(舍)或a=;CD=;当CD=DE时DE是AC垂直平分线,AD=CD,AD=DE,DAE=DEA连接OE,OA=OE,OAE=OEA,DEA=OEA,点D和点O重合,此时,点C和点B重合,CD=2综上所述:当DCE是以CD为腰的等腰三角形时,CD的长为2或【点睛】本题
32、是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键26、-1【解析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得【详解】原式=14+1=1【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.27、(1)150、45、36;(2)28.8;(3)450人【解析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;(2)360乘以A项目人数占总人数的比例可得;(3)利用总人数乘以样本中C人数所占比例可得【详解】解:(1)接受问卷调查的共有3020%=150人,m=150-(12+30+54+9)=45,n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为故答案为:28.8;(3)(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键扇形统计图直接反映部分占总体的百分比大小