《安徽六安市叶集区平岗中学2023年中考数学对点突破模拟试卷含解析.doc》由会员分享,可在线阅读,更多相关《安徽六安市叶集区平岗中学2023年中考数学对点突破模拟试卷含解析.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如果关于x的分式方程有负数解,且关于y的不等式组无解,则符合条件的所有整数a的和为()A2B0C1D32PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25105B0.25106C2.5105D2.51063如图,矩形 ABC
2、D 的边 AB=1,BE 平分ABC,交 AD 于点 E,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F,则图中阴影部分的面积是( )A2-BC2-D4如图,是的直径,弦,垂足为点,点是上的任意一点,延长交的延长线于点,连接.若,则等于( )ABCD5下列四个多项式,能因式分解的是()Aa1Ba21Cx24yDx26x96主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人将1350000000用科学记数法表示为()A135107B1.35109C13.5108D1.3510147cos30=( )ABCD8某校举行“汉字
3、听写比赛”,5个班级代表队的正确答题数如图这5个正确答题数所组成的一组数据的中位数和众数分别是( )A10,15B13,15C13,20D15,159一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD10某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11 如图,已知,要使,还需添加一个条件,则可以添加的条件是 (只写一个即可,不需要添加辅助线)
4、12不等式组的解集是 _.13某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是_14和平中学自行车停车棚顶部的剖面如图所示,已知AB16m,半径OA10m,高度CD为_m15与是位似图形,且对应面积比为4:9,则与的位似比为_16若反比例函数y的图象经过点A(m,3),则m的值是_17若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_三、解答题(共7小题,满分69分)18(10分)如图,已知O中,AB为弦,直线PO交O于点M、N,POAB于C,过点B作直径BD,连接AD、BM、AP(1)求证
5、:PMAD;(2)若BAP=2M,求证:PA是O的切线;(3)若AD=6,tanM=,求O的直径19(5分)计算:解方程:20(8分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点
6、,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)21(10分)计算:sin30+(4)0+|22(10分)如图,AB为圆O的直径,点C为圆O上一点,若BAC=CAM,过点C作直线l垂直于射线AM,垂足为点D(1)试判断CD与圆O的位置关系,并说明理由;(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且CAB=30,求AD的长23(12分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各
7、是多少24(14分)在平面直角坐标系xOy中,若抛物线顶点A的横坐标是,且与y轴交于点,点P为抛物线上一点求抛物线的表达式;若将抛物线向下平移4个单位,点P平移后的对应点为如果,求点Q的坐标参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可【详解】由关于y的不等式组,可整理得 该不等式组解集无解,2a+42即a3又得x而关于x的分式方程有负数解a41a4于是3a4,且a 为整数a3、2、1、1、1、2、3则符合条件的所
8、有整数a的和为1故选B【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键2、D【解析】根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D3、B【解析】利用矩形的性质以及结合角平分线的性质分别求出AE
9、,BE的长以及EBF的度数,进而利用图中阴影部分的面积=S-S-S,求出答案【详解】矩形ABCD的边AB=1,BE平分ABC,ABE=EBF=45,ADBC,AEB=CBE=45,AB=AE=1,BE= ,点E是AD的中点,AE=ED=1,图中阴影部分的面积=S S S =12 11 故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式4、B【解析】连接BD,利用直径得出ABD=65,进而利用圆周角定理解答即可【详解】连接BD,AB是直径,BAD=25,ABD=90-25=65,AGD=ABD=65,故选B【点睛】此题考查圆周角定理,关键是利用直径得出ABD=655、D
10、【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可试题解析:x2-6x+9=(x-3)2故选D考点:2因式分解-运用公式法;2因式分解-提公因式法6、B【解析】科学记数法的表示形式为a的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】将1350000000用科学记数法表示为:1350000000=1.35109,故选B【点睛】本题考查科学记数法的表示方法. 科学记数法的表示形式为a的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值及n
11、的值.7、C【解析】直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.8、D【解析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.9、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.10、B【解析】设原计划平均每天生产x台机器,则实际平均
12、每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:故选B【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程二、填空题(共7小题,每小题3分,满分21分)11、可添ABD=CBD或AD=CD【解析】由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.【详解】.可添ABD=CBD或AD=CD,ABD
13、=CBD,在ABD和CBD中,ABDCBD(SAS);AD=CD,在ABD和CBD中,ABDCBD(SSS),故答案为ABD=CBD或AD=CD【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS12、x1【解析】解不等式得:x5,解不等式得:x-1所以不等式组的解集是x-1.故答案是:x-1.13、143549【解析】根据题中密码规律确定所求即可.【详解】532=5310000+52100+5(2+3)=151025924=9210000+94100+9(2+4)=183654,863=8
14、610000+83100+8(3+6)=482472,725=7210000+75100+7(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.14、1【解析】由CDAB,根据垂径定理得到ADDB8,再在RtOAD中,利用勾股定理计算出OD,则通过CDOCOD求出CD【详解】解:CDAB,AB16,ADDB8,在RtOAD中,AB16m,半径OA10m,OD6,CDOCOD1061(m)故答案为1【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理15、2:1【解析】由
15、相似三角形的面积比等于相似比的平方,即可求得与的位似比【详解】解与是位似图形,且对应面积比为4:9,与的相似比为2:1,故答案为:2:1【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方16、2【解析】反比例函数的图象过点A(m,3),解得.17、 【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好详解:关于x、y的二元一次方程组的解是,将解代入方程组 可得m=1,n=2关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求
16、解,重点是整体考虑的数学思想的理解运用在此题体现明显三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)证明见解析;(3)1;【解析】(1)根据平行线的判定求出即可;(2)连接OA,求出OAP=BAP+OAB=BOC+OBC=90,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可【详解】(1)BD是直径,DAB=90,POAB,DAB=MCB=90,PMAD;(2)连接OA,OB=OM,M=OBM,BON=2
17、M,BAP=2M,BON=BAP,POAB,ACO=90,AON+OAC=90,OA=OB,BON=AON,BAP=AON,BAP+OAC=90,OAP=90,OA是半径,PA是O的切线;(3)连接BN,则MBN=90tanM=,=,设BC=x,CM=2x,MN是O直径,NMAB,MBN=BCN=BCM=90,NBC=M=90BNC,MBCBNC,BC2=NCMC,NC=x,MN=2x+x=2.1x,OM=MN=1.21x,OC=2x1.21x=0.71x,O是BD的中点,C是AB的中点,AD=6,OC=0.71x=AD=3,解得:x=4,MO=1.21x=1.214=1,O的半径为1【点睛】
18、本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度19、 (1)10;(2)原方程无解.【解析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】(1)原式10;(2)去分母得:3(5x4)+3x64x+10,解得:x2,经检验:x2是增根,原方程无解【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验20、(4)A高中观点4 446;(4)456人;(4)【解
19、析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%460=446;(
20、4)80044%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50(4-60%-44%)=508%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图21、1.【解析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值详解:原式=2+1+=1点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键22、(1)CD与圆O的位置关系是相
21、切,理由详见解析;(2) AD=【解析】(1)连接OC,求出OC和AD平行,求出OCCD,根据切线的判定得出即可;(2)连接BC,解直角三角形求出BC和AC,求出BCACDA,得出比例式,代入求出即可【详解】(1)CD与圆O的位置关系是相切,理由是:连接OC,OA=OC,OCA=CAB,CAB=CAD,OCA=CAD,OCAD,CDAD,OCCD,OC为半径,CD与圆O的位置关系是相切;(2)连接BC,AB是O的直径,BCA=90,圆O的半径为3,AB=6,CAB=30, BCA=CDA=90,CAB=CAD,CABDAC, 【点睛】本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判
22、定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键23、40%【解析】先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1x)(12x)240,解得x10.220%,x21.3130%则第一次降价的百分率为20%,第二次降价的百分率为40%【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可24、为;点Q的坐标为或【解析】依据抛物线的对称轴方
23、程可求得b的值,然后将点B的坐标代入线可求得c的值,即可求得抛物线的表达式;由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此,然后由点,轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标【详解】抛物线顶点A的横坐标是,即,解得将代入得:,抛物线的解析式为抛物线向下平移了4个单位平移后抛物线的解析式为,点O在PQ的垂直平分线上又轴,点Q与点P关于x轴对称点Q的纵坐标为将代入得:,解得:或点Q的坐标为或【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q与点P关于x轴对称,从而得到点Q的纵坐标是解题的关键