山东省实验中学2023届高考冲刺模拟数学试题含解析.doc

上传人:lil****205 文档编号:88000241 上传时间:2023-04-19 格式:DOC 页数:20 大小:2.03MB
返回 下载 相关 举报
山东省实验中学2023届高考冲刺模拟数学试题含解析.doc_第1页
第1页 / 共20页
山东省实验中学2023届高考冲刺模拟数学试题含解析.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《山东省实验中学2023届高考冲刺模拟数学试题含解析.doc》由会员分享,可在线阅读,更多相关《山东省实验中学2023届高考冲刺模拟数学试题含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1a为正实数,i为虚数单位,则a=( )A2BCD12直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积

2、为S,则的最小值为ABCD3根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD4已知函数在上可导且恒成立,则下列不等式中一定成立的是( )A、B、C、D、5已知函数满足=1,则等于( )A-BC-D6如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定7某三棱锥的三视图如图所示,则该三棱锥的体积为ABC2D8已知集合,则集合真子集的个数为( )A3B4C7D89函数的大致图象是ABCD10设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD11

3、已知,分别是三个内角,的对边,则( )ABCD12已知函数的最小正周期为,且满足,则要得到函数的图像,可将函数的图像( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的系数为_(用具体数据作答).14如图,在复平面内,复数,对应的向量分别是,则_.15的展开式中的系数为_.16已知双曲线(,)的左,右焦点分别为,过点的直线与双曲线的左,右两支分别交于,两点,若,则双曲线的离心率为_. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)求不等式的解集;(2)

4、若不等式对恒成立,求实数的取值范围.18(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.19(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1

5、次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望20(12分)已知.(1)当时,求不等式的解集;(2)若,证明:.21(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.()证明:;()设,若为棱上一点,使得直线与平面所成角的大小为30,求的值.22(10分)在直角坐标系中,已知点,若以线段为直径的圆与轴相切.(1)求点的轨迹的方程;(2)若上存在两动点(A,B在轴异侧)满足,且的周长为,求的值.参考

6、答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,选B.2、D【解析】设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值【详解】设,联立,得则,则由,得 设,则 ,则点到直线的距离从而令 当时,;当时,故,即的最小值为本题正确选项:【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.3、C【解析】根据程序图,当x0继续运行,x=1

7、-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题4、A【解析】设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.5、C【解析】设的最小正周期为,可得,则,再根据得,又,则可求出,进而可得.【详解】解:设的最小正周期为,因为,所以,所以,所以,又,所以当时,因

8、为,整理得,因为,则所以.故选:C.【点睛】本题考查三角形函数的周期性和对称性,考查学生分析能力和计算能力,是一道难度较大的题目.6、A【解析】利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题7、A【解析】 由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为 高为的三棱锥,所以三棱锥的体积为,故选A8、C【解析】解出集合,再由含有个元素的集合

9、,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.9、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,可排除D选项;当时,当时,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题10、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象

10、可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.11、C【解析】原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考

11、查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.12、C【解析】依题意可得,且是的一条对称轴,即可求出的值,再根据三角函数的平移规则计算可得;【详解】解:由已知得,是的一条对称轴,且使取得最值,则,故选:C.【点睛】本题考查三角函数的性质以及三角函数的变换规则,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用二项展开式的通项公式可求的系数.【详解】的展开式的通项公式为,令,故,故的系数为.故答案为:.【点睛】本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.14、【解析】试题分析:由坐标系可知考点

12、:复数运算15、28【解析】将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.16、【解析】设,由双曲线的定义得出:,由得为等腰三角形,设,根据,可求出,得出,再结合焦点三角形,利用余弦定理:求出和的关系,即可得出离心率.【详解】解:设,由双曲线的定义得出:,由图可知:,又,即,则,为等腰三角形,设,则,即,解得:,则,解得:,解得:,在中,由余弦定理得:,即:

13、,解得: ,即. 故答案为:.【点睛】本题考查双曲线的定义的应用,以及余弦定理的应用,求双曲线离心率.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)按绝对值的定义分类讨论去绝对值符号后解不等式;(2)不等式转化为,求出在上的最小值即可,利用绝对值定义分类讨论去绝对值符号后可求得函数最小值【详解】解:(1)或或解得或或无解综上不等式的解集为(2)时,即所以只需在时恒成立即可令,由解析式得在上是增函数,当时,即【点睛】本题考查解绝对值不等式,考查不等式恒成立问题,解决绝对值不等式的问题,分类讨论是常用方法掌握分类讨论思想是解题关键18、(1);(2)

14、;详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正

15、整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.19、(1)64,65;(2);(3).【解析】(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得,5,10,15,1,利用“超几何分布”的计算公式即可

16、得出概率,进而得出分布列与数学期望【详解】由题意知,样本容量为,(1)平均数为,设中位数为,因为,所以,则,解得(2)由题意可知,分数在内的学生有24人,分数在内的学生有12人设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,则,所以(3)在评定等级为“合格”和“不合格”的学生中用分层抽样的方法抽取10人,则“不合格”的学生人数为,“合格”的学生人数为由题意可得的所有可能取值为0,5,10,15,1,所以的分布列为0510151【点睛】本题主要考查了频率分布直方图的性质、分层抽样、超几何分布列及其数学期望,考查了计算能力,属于中档题20、 (1) (2)见证

17、明【解析】(1) 利用零点分段法讨论去掉绝对值求解;(2) 利用绝对值不等式的性质进行证明.【详解】(1)解:当时,不等式可化为.当时,所以;当时,.所以不等式的解集是.(2)证明:由,得,又,所以,即.【点睛】本题主要考查含有绝对值不等式问题的求解,含有绝对值不等式的解法一般是使用零点分段讨论法.21、()证明见解析()【解析】()由平面,可得,又因为是的中点,即得证;()如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30,列出等式,即得解.【详解】()如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.()由条件可知,所以

18、,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.22、(1);(2)【解析】(1)设,则由题设条件可得,化简后可得轨迹的方程.(2)设直线,联立直线方程和抛物线方程后利用韦达定理化简并求得,结合焦半径公式及弦长公式可求的值及的长.【详解】(1)设,则圆心的坐标为,因为以线段为直径的圆与轴相切,所以,化简得的方程为.(2)由题意,设直线,联立得,设 (其中)所以,且,因为,所以,所以,故或 (舍),直线,因为的周长为所以.即,因为.又,所以,解得,所以.【点睛】本题考查曲线方程以及抛物线中的弦长计算,还涉及到向量的数量积.一般地,抛物线中的弦长问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把已知等式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为某一个变量的方程.本题属于中档题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 其他杂项

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁