《安徽省合肥市庐阳区第四十二中学2023届中考三模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《安徽省合肥市庐阳区第四十二中学2023届中考三模数学试题含解析.doc(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D02在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、
2、好书不断增多,除学校购买外,还有师生捐献的图书下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )A3 B3.2 C4 D4.53某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A平均数 B中位数 C众数 D方差4比较4,的大小,正确的是()A4B4C4D45的相反数是AB2CD6已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )ABCD7如图,ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中
3、点,则以DE为直径的圆与BC的位置关系是()A相切B相交C相离D无法确定8已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A10B14C10或14D8或109某运动会颁奖台如图所示,它的主视图是( )ABCD10下列各运算中,计算正确的是()Aa12a3=a4B(3a2)3=9a6C(ab)2=a2ab+b2D2a3a=6a2二、填空题(共7小题,每小题3分,满分21分)11如图,在ABC中,A60,若剪去A得到四边形BCDE,则12_12如图,点 A、B、C 在O 上,O 半径为 1cm,ACB=30,则的长
4、是_13若不等式组有解,则m的取值范围是_14如图,在ABC中,C=120,AB=4cm,两等圆A与B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留).15对于任意实数a、b,定义一种运算:ab=aba+b1例如,15=151+51=ll请根据上述的定义解决问题:若不等式3x1,则不等式的正整数解是_16将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若ABE20,则DBC为_度17将6本相同厚度的书叠起来,它们的高度是9厘米如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_本三、解答题(共7小题,满分69分)18(10分)综合与实践猜想、证明与拓广问题情境
5、:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为: ;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”小丽:连接AF,图中出现新的等腰三角形,如AFB,小凯:不妨设图中不断变化的角B
6、AF的度数为n,并设法用n表示图中的一些角,可证明结论请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CGDF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,ABC=,其余条件不变,请探究DFG的度数,并直接写出结果(用含的式子表示)19(5分)先化简,再求值:,其中a=+120(8分)在矩形ABCD中,两条对角线相交于O,AOB=60,AB=2,求AD的长21(10分)如图,已知正比例函数y=2x与反比例函数y=(k0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x
7、的取值范围;(3)过原点O的另一条直线l交双曲线y=(k0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标22(10分)如图,已知在梯形ABCD中,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.(1)求证:;(2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果与相似,求BP的长.23(12分)如图,一次函数ykx+b的图象与坐标轴分别交于A、B两点,与反比例函数y的图象在第一象限的交点为C,CDx轴于D,若OB1,OD6,AOB
8、的面积为1求一次函数与反比例函数的表达式;当x0时,比较kx+b与的大小24(14分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定
9、b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2、B【解析】七年级(1)班捐献图书的同学人数为918%=50人,捐献4册的人数为5030%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+92+12
10、3+154+85)50=3.2册,故选B.3、B【解析】解:根据中位数的意义,故只要知道中位数就可以了故选B4、C【解析】根据4=且4=进行比较【详解】解:易得:4=且4=,所以4故选C.【点睛】本题主要考查开平方开立方运算。5、B【解析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以2的相反数是2,故选B【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6、A【解析】此题考查了概率公式的应用注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.7、B【解析】首先过点A作AMBC,根据三角形面积求出AM
11、的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系【详解】解:过点A作AMBC于点M,交DE于点N,AMBC=ACAB,AM=2.1D、E分别是AC、AB的中点,DEBC,DE=BC=2.5,AN=MN=AM,MN=1.2以DE为直径的圆半径为1.25,r=1.251.2,以DE为直径的圆与BC的位置关系是:相交故选B【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键8、B【解析】试题分析: 2是关于x的方程x22mx+3m=0的一个根,224m+3m=0,m=4,x28x+12=0,解得x1=2,x2=1当1是腰时,2是底边,此时周长
12、=1+1+2=2; 当1是底边时,2是腰,2+21,不能构成三角形 所以它的周长是2 考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质9、C【解析】从正面看到的图形如图所示:,故选C10、D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a22ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握
13、各运算的运算法则是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、240.【解析】试题分析:1+2=180+60=240考点:1.三角形的外角性质;2.三角形内角和定理12、.【解析】根据圆周角定理可得出AOB=60,再根据弧长公式的计算即可【详解】ACB=30,AOB=60,OA=1cm,的长=cm.故答案为:【点睛】本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=13、【解析】分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围解答:解:由1-x2得x-1又xm根据同大取大的原则可知:若不等式组的解集为x-1时,则m-1若不等式组的解集为xm时,
14、则m-1故填m-1或m-1点评:本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围14、.【解析】图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积【详解】(cm2).故答案为.考点:1、扇形的面积公式;2、两圆相外切的性质.15、2【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论【详解】3x=3x3+x22,x,x为正整数,x=2,故答案为:2【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x是解题
15、的关键16、1【解析】解:根据翻折的性质可知,ABE=ABE,DBC=DBC又ABE+ABE+DBC+DBC=180,ABE+DBC=90又ABE=20,DBC=1故答案为1点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出ABE=ABE,DBC=DBC是解题的关键17、1【解析】因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论【详解】设这些书有x本,由题意得,解得:x=1,答:这些书有1本故答案为:1【点睛】本题考查了比例的性质,正确的列出比例式是解题的关键三、解答题(共7小题,满分69分)18、 (1) GF=GD,
16、GFGD;(2)见解析;(3)见解析;(4) 90.【解析】(1)根据四边形ABCD是正方形可得ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,即可证明出DBF=90,故GFGD,再根据F=ADB,即可证明GF=GD;(2)连接AF,证明AFG=ADG,再根据四边形ABCD是正方形,得出AB=AD,BAD=90,设BAF=n,FAD=90+n,可得出FGD=360FADAFGADG=360(90+n)(180n)=90,故GFGD;(3)连接BD,由(2)知,FG=DG,FGDG,再分别求出GFD与DBC的角度,再根据三角函数的性质可证明出BDFCDG,故DGC=FDG,则
17、CGDF;(4)连接AF,BD,根据题意可证得DAM=902=901,DAF=2DAM=18021,再根据菱形的性质可得ADB=ABD=,故AFB+DBF+ADB+DAF=(DFG+1)+(DFG+1+)+(18021)=360,2DFG+21+21=180,即可求出DFG【详解】解:(1)GF=GD,GFGD,理由:四边形ABCD是正方形,ABD=ADB=45,BAD=90,点D关于直线AE的对称点为点F,BAD=BAF=90,F=ADB=45,ABF=ABD=45,DBF=90,GFGD,BAD=BAF=90,点F,A,D在同一条线上,F=ADB,GF=GD,故答案为GF=GD,GFGD;
18、(2)连接AF,点D关于直线AE的对称点为点F,直线AE是线段DF的垂直平分线,AF=AD,GF=GD,1=2,3=FDG,1+3=2+FDG,AFG=ADG,四边形ABCD是正方形,AB=AD,BAD=90,设BAF=n,FAD=90+n,AF=AD=AB,FAD=ABF,AFB+ABF=180n,AFB+ADG=180n,FGD=360FADAFGADG=360(90+n)(180n)=90,GFDG,(3)如图2,连接BD,由(2)知,FG=DG,FGDG,GFD=GDF=(180FGD)=45,四边形ABCD是正方形,BC=CD,BCD=90,BDC=DBC=(180BCD)=45,F
19、DG=BDC,FDGBDG=BDCBDG,FDB=GDC,在RtBDC中,sinDFG=sin45=,在RtBDC中,sinDBC=sin45=,BDFCDG,FDB=GDC,DGC=DFG=45,DGC=FDG,CGDF;(4)90,理由:如图3,连接AF,BD,点D与点F关于AE对称,AE是线段DF的垂直平分线,AD=AF,1=2,AMD=90,DAM=FAM,DAM=902=901,DAF=2DAM=18021,四边形ABCD是菱形,AB=AD,AFB=ABF=DFG+1,BD是菱形的对角线,ADB=ABD=,在四边形ADBF中,AFB+DBF+ADB+DAF=(DFG+1)+(DFG+
20、1+)+(18021)=3602DFG+21+21=180,DFG=90【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.19、【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值【详解】原式=,当a=+1时,原式=【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.20、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由AOB=60可得AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在RtABD
21、中,由勾股定理可解得AD的长.试题解析:四边形ABCD是矩形,OA=OB=OD,BAD=90,AOB=60,AOB是等边三角形,OB=OA=2, BD=2OB=4,在RtABD中AD=.21、(1)32;(2)x4或0x4;(3)点P的坐标是P(7+,14+2);或P(7+,14+2)【解析】分析:(1)先将x=4代入正比例函数y=2x,可得出y=8,求得点A(4,8),再根据点A与B关于原点对称,得出B点坐标,即可得出k的值;(2)正比例函数的值小于反比例函数的值即正比例函数的图象在反比例函数的图象下方,根据图形可知在交点的右边正比例函数的值小于反比例函数的值(3)由于双曲线是关于原点的中心
22、对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么POA的面积就应该是四边形面积的四分之一即1可根据双曲线的解析式设出P点的坐标,然后表示出POA的面积,由于POA的面积为1,由此可得出关于P点横坐标的方程,即可求出P点的坐标详解:(1)点A在正比例函数y=2x上,把x=4代入正比例函数y=2x,解得y=8,点A(4,8),把点A(4,8)代入反比例函数y=,得k=32,(2)点A与B关于原点对称,B点坐标为(4,8),由交点坐标,根据图象直接写出正比例函数值小于反比例函数值时x的取值范围,x8或0x8;(3)反比例函数图象是关于原点O的中心对称图形,OP=OQ,OA=OB,四
23、边形APBQ是平行四边形,SPOA=S平行四边形APBQ=224=1,设点P的横坐标为m(m0且m4),得P(m,),过点P、A分别做x轴的垂线,垂足为E、F,点P、A在双曲线上,SPOE=SAOF=16,若0m4,如图,SPOE+S梯形PEFA=SPOA+SAOF,S梯形PEFA=SPOA=1(8+)(4m)=1m1=7+3,m2=73(舍去),P(7+3,16+);若m4,如图,SAOF+S梯形AFEP=SAOP+SPOE,S梯形PEFA=SPOA=1(8+)(m4)=1,解得m1=7+3,m2=73(舍去),P(7+3,16+)点P的坐标是P(7+3,16+);或P(7+3,16+)点睛
24、:本题考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义利用数形结合的思想,求得三角形的面积22、(1)见解析;(2);(3)当或8时,与相似.【解析】(1)想办法证明即可解决问题;(2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;(3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;【详解】(1)证明:四边形ABCD是等腰梯形,.(2)解:作于M,于N.则四边形是矩形.在中,.(3)解:,相似时,与相似,当时,此时,当时,此时,综上所述,当PB=5或8
25、时,与相似.【点睛】本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.23、 (1) ,;(2) 当0x6时,kx+b,当x6时,kx+b【解析】(1)根据点A和点B的坐标求出一次函数的解析式,再求出C的坐标6,2),利用待定系数法求解即可求出解析式(2)由C(6,2)分析图形可知,当0x6时,kx+b,当x6时,kx+b【详解】(1)SAOB OAOB1,OA2,点A的坐标是(0,2),B(1,0) yx2当x6时,y 622,C(6,2)m263y(2)由C(6,2),观察图象可知:当0x6时,kx+b,当x6时,kx+b【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于求出C的坐标24、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为